
Managing Provenance in Orchestrated

Distributed Systems

Studiengang Medieninformatik

Bachelorarbeit

vorgelegt von

Dennis Appel
geb. in Lich

durchgefuehrt am
Fraunhofer IGD, Darmstadt

Referent der Arbeit: Prof. Dr. Frank Kammer
Korreferent der Arbeit: M.Sc. Ivo Senner
Betreuer am Fraunhofer IGD: M.Sc. Ivo Senner

Friedberg, 2020

Abstract

English

Today, in the world of Big Data, Cloud Computing and Internet of Things, many
datasets are produced by increasingly complex data processing pipelines and workflows,
which are often executed by workflow management systems. However, the data produced
by such pipelines and workflows may not always be correct. Incorrect data is not always
discovered immediately, and the problems that caused the incorrect data can be hard to
find. Provenance is a powerful tool, which users can use to assess the quality of the data
produced by their workflows. The thesis presents a provenance management solution to
be used in an orchestrated distributed workflow management system. The provenance
solution aims to provide complete provenance coverage with minimal requirements to
support as many applications as possible.

To determine the applications requirements, the target system and related prove-
nance solutions are explored and evaluated. Furthermore, a prototype based on the
requirements is implemented. Finally, simulated workflow based on a real world use
case is used to point out the strengths and weaknesses of the presented provenance
solution.

Deutsch

In der heutigen Welt von Big Data, Cloud Computing und Internet of Things werden
viele Datenätze durch immer komplexer werdende Prozessierungs-Pipelines und Work-
flows erzeugt. Diese Pipelines und Workflows werden häufig innerhalb von Workflow-
Management Systemen verwaltet und ausgeführt. Die produzierten Daten sind jedoch
nicht immer fehlerfrei. Fehlerhafte Datenätze werden meist nicht sofort entdeckt, und
die Probleme, die zu den Fehlerhaften Daten geführt haben, können schwer zu finden
sein. Provenance ist ein mächtiges Werkzeug, welches Nutzer verwenden können um
die Qualität der erzeugten Daten zu untersuchen. Diese Arbeit stellt eine Prove-
nance Lösung für ein orchestriertes, verteiltes Workflow Management-System vor. Die
vorgestellte Provenance Lösung zielt auf eine vollständige Abdeckung der Provenienz
mit minimalen Anforderungen, um möglichst viele Anwendungen zu unterstützen.

Um die Anforderungen an die Anwendung zu ermitteln, werden verwandte Prove-
nance Lösungen, sowie das Zielsystem untersucht und bewertet. Zudem wird ein Pro-

totyp basierend auf den ermittelten Anforderungen implementiert. Zuletzt werden die
Stärken und Schwächen der vorgestellten Lösung anhand von einem simulierten Work-
flow, welcher auf einem realen Anwendungsfall basiert, ermittelt und aufgezeigt.

ii

Eidesstattliche Erklärung

Ich erkläre, dass ich die eingereichte Bachelorarbeit selbstständig und ohne fremde Hilfe
verfasst, andere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt und
die den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen als solche ken-
ntlich gemacht habe.

Friedberg, den 17. Januar 2020

Dennis Appel

Acknowledgements

The topic researched in this thesis is part of the “Marauder” project, a project by
Fraunhofer IGD, in which a feature-rich orchestrated distributed workflow management
system is developed.

I would like to use this opportunity to thank Prof. Dr. Frank Kammer for his sup-
port during my bachelor studies and while writing this thesis.

Furthermore, I want to thank Ivo Senner for introducing me to the Marauder project
and advising me during this research.

Finally, special thanks go to my family and friends for always being there for me when
I need them and for supporting me in every step I’ve taken so far. This would not have
been possible without your support.

Contents

Acknowledgements i

1 Introduction 1

1.1 Motivation . 2

1.2 Research Objective . 3

1.3 Methodology . 3

1.4 Structure . 4

2 Fundamentals 5

2.1 Distributed Architectures and Orchestration 5

2.2 Provenance . 6

2.3 Advanced Message Queuing Protocol and RabbitMQ 7

2.4 GraphQL . 9

2.5 Dgraph . 11

3 Related Work 15

3.1 Provenance in Distributed Environments. 15

3.2 Provenance-Aware Storage. 16

3.3 Semantic Provenance. 16

3.4 Geospatial Provenance. 16

3.5 Retrieval and Storage of Provenance. 17

3.6 Provenance Quality. 18

3.7 Apache NiFi. 18

4 Concept 21

4.1 Application Design . 21

4.2 Communication within the Application 22

4.3 Provenance Service Architecture . 24

5 Implementation 29

5.1 Technologies . 29

5.2 Initialization . 31

5.3 Communication . 31

5.4 Provenance Generation . 32

iii

Contents

5.5 Provenance Storage . 34
5.6 GraphQL Integration. 36
5.7 Use Case Scenario Realization . 38
5.8 Deployment . 40

6 Evaluation 41
6.1 Use Case . 41
6.2 Provenance Generation. 42
6.3 Provenance Retrieval. 44
6.4 Provenance Quality. 46
6.5 Database Performance . 50
6.6 GraphQL API . 52
6.7 Generating Provenance without Dedicated Messages 55

7 Conclusion 59

Appendix A Provenance Representations 61
A.1 Dgraph Mutation . 61
A.2 Combined Provenance Graph . 62

Appendix B Dgraph 64
B.1 Queries . 64
B.2 Schema . 65

Appendix C Tank Import Use-Case Results 66

Appendix D Docker 68
D.1 Dockerfile . 68
D.2 Docker-Compose . 68

Acronyms 71

Bibliography 73

iv

List of Figures

2.1 Abstract visualization of a distributed system across multiple nodes 5
2.2 PROV-DM core structure in form of an UML 7
2.3 RabbitMQ communication model for a topic exchange 8

4.1 Abstract scenario of the tank-import use case 21
4.2 Communication between two services via the RabbitMQ message broker . . 23
4.3 Provenance service architecture . 25
4.4 Sequence diagram for the provenance generation of a single provenance entity. 27
4.5 Provenance graph of a single entity and the directly involved parties 28

6.1 Visualization of the query result from Listing 6.1 46
6.2 Provenance graph of an entity, the activty that generated it and its respon-

sible parties . 47
6.3 Provenance graph of an imported feature 48
6.4 Provenance graph of a corrected feature . 49
6.5 Graph representation of Listing 6.3 . 54

A.1 Combined graph of the complete processing trees of a rejected feature and a
successfully imported feature . 63

v

Chapter 1

Introduction

When working with data, one question is often left unanswered: “How was the dataset
produced?”. Before a dataset is made available, the data has to be processed. Depending
on the type of data, these processes can vary between simple sensory output reads and
highly complex post-processing pipelines. Information about these steps, the data and
everyone involved is called provenance.

The Word Wide Web Consortium (W3C) specifies provenance as “information about
entities, activities, and people involved in producing a piece of data or things, which can
be used to form assessments about its quality, reliability or trustworthiness” [14]. More-
over, the W3C also provides PROV-DM, a generic provenance data model. The data
model describes the different components, including the three core structures activities,
agents and entities, as well as the relations between them.

Especially geospatial datasets are usually produced by processing pipelines, or work-
flows. The workflows are often managed by workflow management systems like Apache’s
Nifi1. However, such systems are often limiting users to predefined processes, or pro-
cesses that are implemented using their specifcation. As a result, provenance generated
by workflow management systems is often limited to single workflow executions. Hence,
information on what happened to a dataset across potentially many different workflows
needs to be collected manually.

The “Marauder” project seeks to develop an orchestrated, distributed workflow man-
agement system that allows users to connect generic processing, or even storage, compo-
nents to its infrastructure. The developed system is from here on referenced as orches-
tration system. This is achieved by on the one hand providing a system-level connector
component and on the other hand enforcing a comparatively open specification that
allows developers to easily connect their components. System services offer additional
functionality. One of the system services is a provenance service with the goal to gener-
ate high-quality provenance, independent of workflow boundaries, for as many different
components as possible.

Aperture Tank2, from here on referred to as tank, is a distributed database that stores

1https://nifi.apache.org/
2https://github.com/aperture-sh/tank

1

https://nifi.apache.org/
https://github.com/aperture-sh/tank

1. Introduction

geospatial data and focuses on visualization and analysis. It is used as the final storage
location for geospatial workflows. The database accepts GeoJSON features [5] that are
prepared in various processing steps, before they are imported. During the database-
import features with unknown fields or incorrect field formats, may be rejected. The
rejected features are stored in an auxiliary database the Exhauster3, from which they
can be queried and corrected manually. Without provenance the only way to know
what has been changed between a feature before and after it has been stored is a direct
comparison, albeit without information about possible interim steps. Hence, possible
problems within the processing pipelines are hard to find and solve. This problem is
even more severe in distributed systems where data is shared between and manipulated
by multiple services.

1.1 Motivation

For many datasets meta data is just as, if not more, important as the data itself.
Provenance, in its essence, is a piece of meta data, that has seen different data models
and has been applied to various different applications and systems, like file systems,
workflow management tools, data catalogues, and more. With the growing amount of
data, manual management of meta data such as provenance is next to impossible.

A workflow that prepares a GeoJSON feature-collection for the tank database is a
good example for this. An initial feature-collection is often only a collection of geometries
and their respective coordinates and contain no human readable data. Before they are
imported into the tank they need to be prepared. During preparation the dataset gets
split apart and features are prepared separately, before they are stored in the database
as separate entities. The significance of provenance in such a workflow can easily be
described with a simple example.

A user defines a workflow that contains several services, which when executed invoke
a process that computes data, or in this case make up the processing pipeline used to
prepare and store features in the tank database. The lengthy workflow is executed over
night and on the next day, when the user wants to work with his newly generated data,
only geometries and coordinates are stored in the database. To make matters worse,
half of the data contained in the initial dataset is missing, but the workflow finished
without an error. What happened? Since the user did not use a workflow management
system that supports provenance, the only way to find out what exactly went wrong is to
debug the entire workflow. If the user had used a system with provenance, he could easily
reproduce the process chain that generated the incorrectly imported feature, which in
return makes it easier to find the error. Furthermore, once the culprit has been found,
provenance, depending on the implementation, can be used to find all other datasets
that have been corrupted by the responsible service.

3https://github.com/aperture-sh/exhauster

2

https://github.com/aperture-sh/exhauster

1.2. Research Objective

1.2 Research Objective

The example in the earlier section shows how provenance can be used to make debug-
ging workflows easier. However, providing detailed provenance is not always simple,
especially when multiple different service definitions need to be supported. Hence, the
goal of the thesis is to propose a provenance service that is able to generate quality
provenance for an orchestrated and distributed workflow management system, indepen-
dent of service definitions and workflow boundaries. Furthermore, the usefulness of the
generated provenance for the system, its services and the produced data is assessed.

To do so an application is implemented that reads, handles and stores provenance
data from services within the orchestrated system to generate provenance graphs. In
addition, a queryable application programming interface (API) is implemented to re-
trieve and evaluate the stored information. Hence, the goal of this thesis is to answer
the following questions:

• What information is required to generate sufficient and usable provenance infor-
mation?

• How can the data be accessed via a queryable API

• How can the data be processed efficiently?

• How can provenance be used to increase the quality of the data generated by the
application and the application itself?

1.3 Methodology

To study the generation and analysis of provenance in distributed systems the thesis
proceeds as follows: Using the specification of a distributed orchestration system the
requirements for a service that generates provenance for the system is developed. A
message specification will be developed to ensure that the requirements of sufficient
provenance based on PROV-DM are met.

Furthermore, an API, which offers methods to retrieve specific entities, activities or
agents in addition to full graph representations, is implemented. Together they are used
to evaluate the data model, the chosen technologies as well as the developed message
specification. The API will be used to evaluate the implemented provenance data model
and the value of the generated provenance for the orchestration system, its services and
the generated data.

The shortly mentioned import pipeline for the Tank database offers an optimal use-
case to implement and evaluate a provenance solution. Hence, scripts and tools will be
implemented to simulate its workflow. The results will be used for evaluation.

3

1. Introduction

1.4 Structure

First, the fundamental technologies and design patterns used throughout the thesis are
explained. Next, in Chapter 3, the thesis analyzes and summarizes previous work in the
field of provenance across different fields.

Chapter 4 introduces the underlying application design and its internally used com-
munication framework before deriving the provenance services requirements from the
application’s specification. The chapter finishes by introducing the steps and services
necessary to realize the Tank import use case.

In the following chapter, the implementation of each implemented component, the
use case realization, the used technologies and lastly how the service and its component
are deployed is explained. The implementation and its general concept is evaluated in
Chapter 6.

4

Chapter 2

Fundamentals

2.1 Distributed Architectures and Orchestration

Steen and Tanenbaum define distributed systems as “a collection of autonomous com-
puting elements that appears to its users as a single coherent system” that refer to
two characteristic features of distributed systems [19]. The first characteristic, the
autonomous computing elements, refer to computing nodes that can and will act inde-
pendently, and hence are autonomous. The second characteristic refers to the outward
appearance of a distributed system. Even if it consists of many independent nodes, dis-
tributed systems appear as a “single coherent system”. Distributed systems are usually
organized by a middleware. The tasks of a middleware in distributed systems are for
example the management of communication, resources and accounting.

Node 1

Service 1

Node 2

Service 2

Node 3

Service 3

Middleware

Figure 2.1: Abstract visualization of a distributed system across multiple nodes, which
are connected to a shared middleware.

An orchestration service is the implementation of a centralized middleware that
controls the workflow of a distributed application. Steen and Tanenbaum compare a
centralized organisation to a client server pattern [19]. The server is a service that is
implemented on a single node and the client requests a server to do something. To do so

5

2. Fundamentals

the orchestration service needs to be aware of all nodes within the system. Awareness
is gained through different means. One example is a handshake between services. A
handshake between services is achieved by one service, for example the orchestration
service, sending out a broadcast request to all connected nodes which then reply with
which service they implement. If the orchestration service wants a specific service to
be executed, the orchestration service takes on the role of the client and requests the
target service, the server, to do something. The organization done by the orchestration
service includes process and service execution in addition to the organizational tasks of
a middleware as shown above.

2.2 Provenance

Provenance is generally defined as the heritage or origin of something. In computing
provenance is a metadata component. Geospatial datasets commonly use ISO 19115
family for the description of meta data and provenance information. However, with
provenance being not exclusive to geospatial data, other standards have been developed
in different fields. Moreau et al. proposed the Open Provenance Model (OPM) with
the means to create a shared provenance model [13]. Based on OPM, the World Wide
Web Consortium (W3C) introduced the PROV family in 2013. The core of the PROV
family is PROV-DM, a conceptual and flexible data model for provenance.

PROV-DM. W3C’s provenance data model distinguishes between PROV-DM Types
and PROV-DM Relations. Types describe objects, occurrences and responsibilities and
the PROV-DM relations are relations between those types. A visualization of the core
concept’s types and relations can be found in Figure 2.3. The PROV-DM core concept
consists of the following types:

• Entities are real and imaginary objects or things with fixed attributes.

• Activities are occurrences that use or generate entities over a certain period of
time.

• Agents are things that are responsible for activities or other agents. Agents are
not necessarily a person.

The core relations include:

• WasGeneratedBy is a relation between an entity and an activity that indicates
which activity has generated a selected entity.

• Used is a relation between an activity and an entity that indicates which entities
were used by an activity.

• WasDerivedFrom is a relation between two entities that indicates an entity’s
origin entity.

6

2.3. Advanced Message Queuing Protocol and RabbitMQ

• WasAttributedTo is a relation between an entity and an agent that indicates
which agent is responsible for a specific entity.

• WasAssociatedWith is a relation between an activity and an agent that indi-
cates which agent is responsible for a specific activity.

• ActedOnBehalfOf is a relation between two agents that indicate which agent is
responsible for another one in the specific context of an activity.

Figure 2.2: PROV-DM core structure in form of an UML [14].

2.3 Advanced Message Queuing Protocol and RabbitMQ

The Advance Message Queuing Protocol (AMQP) is an open internet protocol for busi-
ness messaging between two parties. It consists of multiple layers that include abstract
messaging formats and, on its lowest level, a binary transportation protocol between
peers [1].

AMQP is widely used in the industry and has been implemented in multiple prod-
ucts1, for example Microsoft’s Windows Azure Service Bus, Apache Qpid and Rab-
bitMQ. Naik shows that, while not being a global standard like the HyperText Transfer

1https://www.amqp.org/about/examples

7

https://www.amqp.org/about/examples

2. Fundamentals

Protocol (HTTP), AMQP is widely used in Internet of Things (IoT) and Machine to
Machine (M2M) settings [16].

AMQP Model. The AMQP model specifies modular components that can be divided
into three main types, namely exchanges, message queues and bindings [2], that are
connected into processing chains.

• Exchanges receive and route messages to queues. Exchanges can be further
divided into exchange types. The criteria for message routing is dependant on the
exchange’s type.

• Message queues store the messages that have been routed to them until they
are consumed by a client application.

• Bindings are the relationship between a message queue and an exchange. Bind-
ings include the criteria used by exchanges for routing to message queues.

Producer Exchange

Queue 1

Queue 2
#.logs

#.provenance
Consumer 1

Consumer 2

Figure 2.3: RabbitMQ communication model for a topic exchange.

Messaging in Topic-Exchanges. Topic exchanges are a specific exchange type that
allows the use of binding keys to bind a message queue to the exchange. Messages
sent to a topic exchange usually contain a so called routing key, an arbitrary list of
words that is delimited by periods, for example ”system.log.warning”. A queue that
binds to a topic exchange uses a binding key. Binding keys follow the same rules as
routing keys. They can, however, also use the wildcards ”*” to substitute exactly
one word and ”#” to substitute zero or more words. Binding keys are used by topic
exchanges to route messages that match a bound queue’s binding key to that specific
message queue. For example, a queue with the binding key ”#.log.#” receive any
message of which the routing key contains the word ”log”, this includes routing keys
like ”system.log.warning”, ”app.log”, or ”log.error”.

8

2.4. GraphQL

RabbitMQ. RabbitMQ2 is a message broker by Pivotal that implements the AMQP
specification. While AMQP version 1.0 became an ISO standard in 2014, RabbitMQ
was originally developed, and still uses, AMQP version 0-9-1. However, support for
version 1.0 can be achieved by using plugins3.

RabbitMQ offers cloud and enterprise ready features, for example authentication
and Lightweight Directory Access Protocol (LDAP) support, and is expandable using
prebuilt or custom plugins. RabbitMQ supports multiple deployment strategies4 for
local- and distributed cloud deployment using clusters5.

2.4 GraphQL

GraphQL6 is an open-source query language and server-runtime for APIs developed and
maintained by Facebook. GraphQL’s development started 2012 as an internal project
before it was made public in 2015. It was developed to replace Representational state
transfer (REST) application interfaces in scenarios where the REST model would require
too many queries to accumulate the required data, or when the data amount transferred
would be unreasonably high due to unnecessary information contained within the data.
Nogatz and Seipel [17] show that queries that would require multiple request-response
cycles in a REST implementation can be concluded in a single cycle by using GraphQL
instead.

Queries. GraphQL queries are basically a selection of objects and their attributes.
An object’s attribute is called a field while the object itself is a type. In the latest
released specification, Facebook describes Queries as selection sets that “is primarily
composed of fields” [9]. Due to selecting the fields within a query, a queries result has
the same structure and shape as the query itself. Listing 2.1 and Listing 2.2 show an
exemplary query and its result.

{

student(id: "1000") {

uid

id

name

age

}

}

Listing 2.1: Exemplary GraphQL query.

{

"data": {

"student ": {

2https://www.rabbitmq.com/
3https://www.rabbitmq.com/plugins.html
4https://www.rabbitmq.com/download.html
5https://www.rabbitmq.com/clustering.html
6https://graphql.org/

9

https://www.rabbitmq.com/
https://www.rabbitmq.com/plugins.html
https://www.rabbitmq.com/download.html
https://www.rabbitmq.com/clustering.html
https://graphql.org/

2. Fundamentals

"uid": "0x1"

"id": "1000"

"name": "Max Mustermann",

"age": 42

}

}

}

Listing 2.2: Result of the query in Listing 2.1.

Types and Fields. GraphQL queries are run against GraphQL types. Types are
domain objects that contain GraphQL fields. For example, when describing a student
object in GraphQL, the user would be the type and its fields would be its attributes
such as name and age. Listing 2.3 shows the type and field definition for a student
object. The exclamation mark means that a field is not nullable.

type Student {

uid: ID!

id: ID!

name: String!

age: Int!

}

Listing 2.3: Type and field definition for an arbitrary student type object.

The data type of a field is called a scalar. GraphQL provides scalars for primitive
data types like strings or integers, however, custom scalar types can be implemented
using the official libraries. The example in Listing 2.1 is a query on the type Student and
its fields Name and Age, that are of the scalar types String and Number respectively.
Furthermore, fields can have arguments that are used to further filter the data of a field.

It is to note that a field can also be used to describe relations between types. For
example, the student type can have a field named university of type University that is
used to connect the two types.

Schema. GraphQL’s general design concept is that the underlying business domain
is modeled as a graph. This is achieved by defining a GraphQL schema based on
GraphQL’s type system. Within a schema types and the fields of types as well as their
relations are described. Additionally, a schema contains query types. Query types share
similarities with the object types, but are used to define the entry point of a query. They
also provide resolver functions that are used to accumulate the data that is required to
construct the objects the GraphQL server returns. Due to the use of independent data
acquisition through resolver functions, GraphQL is not bound to specific databases or
backend technologies. Listing 2.4 shows a Go implementation of a simple query type.

"student ": &graphql.Field{

Type: Student ,

Description: "Get student by id",

Args: graphql.FieldConfigArgument{

"id": &graphql.ArgumentConfig{

10

2.5. Dgraph

Type: graphql.ID,

},

},

Resolve: func(p graphql.ResolveParams) (interface{}, error) {

\\ accumulate data for student object

return resolveStudentQuery(p)

},

}

Listing 2.4: Exemplary GraphQL query type implemented in Go.

2.5 Dgraph

Dgraph7 is an open-source distributed graph database written in Go, which is developed
by ex-google engineers. Graph databases is one of the NoSQL8 database families. Other
families include Wide Column Stores, Document Stores and Key-Value stores. Dgraph
uses Badger, a key-value store, as persistent storage. Batra and Tyagi show that graph
databases are significantly faster than relational database models for scenarios where
highly relational data is queried [3].

Query Language. Dgraph’s query language is GraphQL+, a derivative of Facebook’s
GraphQL. It shares the same design principles as GraphQL, and thus the fundamentals
described in the previous section apply. One key difference to Facebook’s GraphQL
is, that GraphQL+ has been simplified and unnecessary features have been removed,
while features required for database operations have been added. Listing 2.5 shows an
exemplary query for comparison with the GraphQL query from the previous section.
Notable differences are the function declaration in the query header instead of a simple
variable binding. This is due to the different operations supported by Dgraph. For
example when querying an user by the user ID, different query operations can be used.
The eq-operation9 looks for an exact match, while operations such as anyofterms can
be used to find matching patterns like words in sentences.

{

user(func: eq(id, "1000") {

uid

id

name

age

}

}

Listing 2.5: GraphQL+ query on an arbitrary user node.

7https://dgraph.io/
8https://nosql-database.org/
9https://docs.dgraph.io/query-language/#indexing

11

https://dgraph.io/
https://nosql-database.org/
https://docs.dgraph.io/query-language/#indexing

2. Fundamentals

Schema. Unlike many database models, Dgraph does not enforce a pre-defined struc-
ture in order to run queries or mutations. If a schema is not defined, the type of a field
is inferred on the first mutation that adds it. Schemas can be added or modified at
any time. This allows for a very dynamic and flexible schema. However, in order to
efficiently index and work with the data in the database, applying a schema is highly
recommended.

Within a schema, a field is assigned a data type and indices. The indices are used for
different query operations. The earlier example makes use of the eq-operation on the id
field. Therefore, the id field has to be given an index that supports this operation. Other
operation specific indices are reverse edges and count. Listing 2.6 shows an exemplary
schema that defines the fields used in this section’s examples. Note that uid is not
defined in the schema as it is a default field used by Dgraph and its values are assigned
internally.

id: string @index(hash) .

name: string @index(exact , fulltext) @count .

age: int @index(int) .

Listing 2.6: Exemplary Dgraph schema.

Mutations. A mutation is an operation that inserts data into the database. Dgraph
uses the Resource Description Framework10 (RDF) language, specifically the N-Quad11

format, for mutations.
The N-Quad uses triples in the form “<subject> <predicate> <object> .”. Subjects

are nodes in a graph and thus database objects. Predicates are a directed edge to the
object — note that this is not the same object as a database object. The object is the
target of the directed edge and can be a database object or a literal. A period is used
as the delimiter. “<0x01> <friend> <0x02> .” is an exemplary triple in which the subject,
a node in the database with the uid 0x01, is linked to the object, another node in the
database with the uid 0x02, by the directed edge friend.

If a new database object is to be inserted, a blank node has to be used as the subject.
A blank node has the form _:IDENTIFIER. Blank nodes can be used like variables within
mutations. This allows a new nodes to be linked with each other. Note that the blank
node identifier only exist during the execution of the mutation and thus cannot be
used as parameters for subsequent queries or mutations. For those, the uid assigned by
Dgraph has to be used.

Listing 2.7 shows a mutation in which two existing nodes, 0x01 and 0x02, are linked
by the friend edge, and two new nodes :new-1 and :new-2 are added. The blank node
:new-1 is linked to the existing node 0x01 and the other blank node :new-2 is linked

to :new-1 upon insertion.

<0x01 > <friend > <0x02 > .

<_:new -1> <id > "1003" .

<_:new -1> <name > "Max Mustermann" .

10https://www.w3.org/RDF/
11https://www.w3.org/TR/n-quads/

12

https://www.w3.org/RDF/
https://www.w3.org/TR/n-quads/

2.5. Dgraph

<_:new -1> <age > "20" .

<_:new -1> <friend > <0x01 > .

<_:new -2> <id> "1004" .

<_:new -2> <name > "Max Muster -Mustermann" .

<_:new -2> <age > "22" .

<_:new -2> <friend > <_:new -1> .

Listing 2.7: Dgraph mutation with existing and new nodes.

13

Chapter 3

Related Work

Provenance is a well documented and researched topic that has been applied in many
different fields for different use cases. In this chapter different provenance concepts,
models or extensions to existing models are introduced. After giving a brief overview
of provenance concepts for different use cases, modern provenance solutions used for
geospatial data are introduced and shortly evaluated. At last this chapter introduces
the workflow management system Apache Nifi to show how the proposed provenance
solution for the orchestration system and the orchestration system itself differ from
Apache’s solution.

3.1 Provenance in Distributed Environments.

Gehani and Tariq introduce Support for Provenance Auditing in Distributed Environ-
ments (SPADE) [11], a provenance collection and management infrastructure built on
top of a graph-based data model. It supports domain specific semantics in form of
arbitrary annotations connected to nodes. Gehani and Tariq discuss different storage
solutions and define the capabilities and requirements for provenance systems in dis-
tributed environments. Malik, Nistor and Gehani show how SPADE can be used to
generate provenance by collecting provenance sub-graphs from different hosts to gener-
ate a complete provenance graph [12].

While SPADE seeks to provide a full solution to most provenance problems, their
approach is monolithic and requires their own reporters to be connected to the ap-
plications that should generate provenance. However, their work clearly shows that a
provenance infrastructure can be build using a graph-based data model, in their case
OPM, and graph databases.

The provenance solution that is proposed in the thesis seeks to be able to gener-
ate provenance for as many different services as possible. Its provenance generation
is designed so that it needs as little information as possible to generate provenance.
Additionally, the provenance service is meant to fetch missing information on its own.
This is in clear contrast to Gehani and Tariq’s solution that relies on the reporters to

15

3. Related Work

provide full provenance coverage of provenance components that are to be stored in
their system.

3.2 Provenance-Aware Storage.

Provenance at its core is essentially meta data and can be applied to anything on which
the basic concept of heritage can be applied on. This means that it can be used for more
than service driven environments like workflow execution systems. Muniswamy-Reddy,
Holland, Braun and Seltzer show that provenance is not only applicable in service driven
environments, but also in a system level storage systems [15]. Zhao, Shou, Maliky and
Raicu expand on the file system idea and introduce a distributed and provenance aware
file system [22]. This is achieved by combining the distributed file system FusionFS with
SPADE [11].

3.3 Semantic Provenance.

Sahoo, Sheth and Henson introduce semantic provenance [18]. Semantic provenance is
an approach in which common models of provenance representation are extended with
key concepts of semantic metadata with the goal to make provenance more useful in
eScience. They argue that in order to be usable in eScience, provenance needs to be
“software-interpretable and expressive”. To achieve the combination of semantic meta-
data and provenance they add “domain knowledge and ontological underpinning” to the
existing model. This results in a three-dimensional provenance model in which domain
specific provenance objects, achieved by domain knowledge, are combined with seman-
tic annotations like time and space. Sahoo et al. show that semantic provenance offers
many advantages. However more modern provenance data models like PROV already
support semantics1. Hence, a manual extension of provenance to support semantics is
no longer required.

3.4 Geospatial Provenance.

Closa, Masó, Proß and Pons apply the W3C PROV model and other provenance models
to geospatial data [7]. Their work shows that for pure geospatial use cases a single
provenance model may not be enough. However, PROV’s design make it the best
available choice for most use cases. They also show that PROV is easily expandable
and can serve as a base for a combined provenance model.

Garijo, Gil and Harth discuss the challenges of modeling geospatial provenance [10].
They define seven categories of questions that form the requirements for geospatial
provenance. The categories are divided into three levels: dataset, object and property
requirements for a single dataset and sets of datasets. Their levels are defined as follows:

• At the dataset level the entire dataset is considered a single provenance entity.

1https://www.w3.org/TR/prov-sem/#semantics

16

https://www.w3.org/TR/prov-sem/#semantics

3.5. Retrieval and Storage of Provenance.

• At the object level the objects contained in the dataset are asserted.

• At the property level provenance is used to answer questions about a single
object’s properties, their attributes and the corresponding values.

The last category are requirements that cannot be categorized into the mentioned cate-
gories. Like Closa et al. [7] they base their provenance on the W3C model and expand
it to fit their requirements. Doing so they again prove the extendability and viability
of a W3C based provenance approach.

Yue and He define general considerations and geospatial considerations for prove-
nance in modern infrastructures [21]. Their practical main considerations are the aggre-
gation and availability of provenance in applications. The main focus of their work is the
applicability of provenance for geospatial data. They share main ideas with Closa et al.
[7] and Garijo, Gil and Harth [10] and define the requirements for geospatial provenance.
Yue and Hes main requirements are space and time related information, the granularity
and the scalability of the applied provenance model. Di, Yue, Ramapriyan and King [8]
base their approach on Yue and He’s publication [21] and extend it by defining general
guidelines, key considerations and introduce potential solutions for future work in that
field.

The approaches introduced in this paragraph prove that PROV is applicable for
geospatial provenance. Moreover, the requirements that a provenance data model needs
to fulfill to be a viable option for provenance in geospatial processing are usually more
complex and require more consideration than provenance for non geospatial data. The
orchestration system is able to execute both geospatial and non-geospatial workflow
scenarios and thus the W3C PROV model is a suitable approach to a provenance solution
for that system.

3.5 Retrieval and Storage of Provenance.

The W3C PROV-DM can be modeled as a graph. Graphs are usually highly relational
data. If such data would be translated to common relational database models, the
data would have to be divided into several tables. Hence, querying graph models from
relational database models would result in multiple “JOIN” statements, which, in theory,
is rather slow. Vicknair et al. compare a MySQL database to the graph database Neo4j
[20]. Their results show that graph databases outperform relational databases in queries
that return a structural representation of a graph. Their work also shows that due to
the indexing mechanisms in graph databases, particularly Neo4j, graph databases can
outperform relational database models when requesting single database entities that are
queried by full text search. They further show that, while graph databases outperform
relational databases in string based queries, relational databases are far superior in
integer based single entity queries. In addition to their performance analysis, Vicknair
et al. discuss security concerns when using graph databases as they usually do not
provide multi user management.

17

3. Related Work

Bryant shows how GraphQL can be used to retrieve heritage data [4]. While he
does not work with provenance, provenance and heritage data share enough similarities
to consider his approach. Bryant also discusses the advantages and limitations of using
a GraphQL API together with a graph database. His main advantages are the stan-
dardized API that allows simple integration of third-party tools, the well documented
GraphQL standard and the high-quality feedback provided by the API server. Further-
more, GraphQL can simplify the maintenance of internal and external data models as
its design allows it to be used with any data model on the backend.

3.6 Provenance Quality.

Cheah and Plale show how provenance can be analysed with the means to increase its
quality [6]. They argue that most applications that generate provenance do so passively
and thus anomalies that may have occurred within those applications are also present
in the resulting provenance representations. They define two dimensions of provenance
quality, the completeness and the correctness. The correctness refers to the contextual
integrity of provenance data and includes faulty provenance entries caused by errors in
workflow execution or problems with the provenance generation itself. The completeness
is the structural integrity of a provenance graph. Their work shows that evaluating the
quality of provenance graphs is important to find and isolate potential problems with
not only the provenance collection but possibly the application or workflows executed
by the system.

The procedures Cheah and Plale introduce should be applicable to most provenance
data models, including PROV. Due to the amount of different services that can and
will generate provenance during execution within the orchestrated system, the quality
of the generated provenance should be analysed frequently. Cheah and Plales approach
appears to be suitable for this analysis.

3.7 Apache NiFi.

Apache NiFi2 is a workflow management system. That has been originally developed
by the National Security Agency (NSA). It is designed to control the data flow between
services in distributed and non-distributed settings. NiFi supports data provenance to
monitor and analyse the data flow.

While NiFi and the orchestration system share similarities like a distributed archi-
tecture and support for data provenance, NiFi lacks the ability to orchestrate services.
Additionally services, or processors as they are called in NiFi, are required to be specif-
ically implemented for NiFi. Whereas the core concept of the orchestration system is to
be able to connect any service to the system without developers having to implement
specific interfaces.

2https://nifi.apache.org/

18

https://nifi.apache.org/

3.7. Apache NiFi.

NiFi handles provenance by tracking provenance events3 which essentially are PROV
activities. In contrast to the provenance solution developed in the thesis, NiFi does not
handle provenance on an entity base. This means that instead of creating a new prove-
nance entity which is connected to an activity, which has created this entity, NiFi tracks
the changes to the input data during the workflow execution. As a result their prove-
nance model is limited to and exists only in the context of its corresponding workflow.
The provenance solution developed for the orchestrated system however aims to support
provenance relations across multiple workflows or scenarios.

3https://nifi.apache.org/docs/nifi-docs/html/user-guide.html#data_provenance

19

https://nifi.apache.org/docs/nifi-docs/html/user-guide.html#data_provenance

Chapter 4

Concept

4.1 Application Design

The provenance service is designed to be used within a distributed and orchestrated
application and hence the central concepts of the application need to be considered.
The goal of this chapter is to describe the central concepts and requirements of the
application. Note that the application described in this chapter is in a development
stage. Thus, the concepts for both, the orchestrated application and the provenance
service, are not final. However, the fundamental design principles will still apply.

Scenario. The main purpose of the application is to execute scenarios. Scenarios
are a collection of tasks which, when executed, make up a process pipeline. In other
words, a scenario is a predefined and repeatable workflow that consists of multiple
execution steps and is created by an application user. Additionally, a scenario contains
all information required to execute a task specifically for a scenario. The information can
include command-line parameters, paths to executables, paths to in- and output files, or
directories respectively, and more. Scenarios are given an unique ID, called scenarioID,
by the orchestration application that is used internally to differentiate between them.

Split Geocode Import

Building Footprints

Figure 4.1: Abstract scenario of the tank-import use case.

21

4. Concept

Service. A service is an user defined, executable task within a scenario. Services
usually, but not necessarily, use command-line tools that accept parameters and runtime
arguments that are managed by a scenario. Each execution is unique, even if it is the
same service and are called process. Services, just as scenarios, are given an unique ID
called serviceID.

Process. A process is a single, unique runtime of a service within a scenario. Processes
are also given unique IDs called processID.

System Services. System services are services provided by the application. They
include services to generate and retrieve system logs and metrics, provenance, as well as
administrative services that can be used to retrieve information on processes, scenarios,
services and users.

Requirements. In order to execute and manage its corresponding services as well as
system services, the application needs to meet the following requirements:

• The application needs an orchestration service that manages scenarios and ser-
vices.

• The orchestrater needs to be able to communicate with the scenarios and services
in order to manage them.

• The services need to be able to communicate with scenarios as well as other
services.

• The application needs a defined, yet as generic as possible, message format to
allow communication for as many differently designed services as possible.

4.2 Communication within the Application

The application, scenarios and services communicate by sending JSON encoded mes-
sages using the message broker RabbitMQ. Before the usage of RabbitMQ can be further
described, the messages that need to be exchanged by RabbitMQ need to be considered.
Messages exchanged within the application can be divided into the following basic types:

• Status messages are sent when a process spawned by a service, or a service it-
self changes its state, for example when it finished executing and changes to a
completed state.

{

"timestamp ": "2019.12.01 12:12:12.000"

"started ": "2019.12.01 12:12:11.000"

"status ": "complete"

"numResults ": 42

}

22

4.2. Communication within the Application

• Log messages are further divided into different log-levels and can be both, pro-
cess related or scenario related. Scenario related log messages are sent when for
example the scenario moves to the next service, or when a service spawns a new
process. Process logs can contain messages such as access notifications and error
messages and are specific to a process.

{

"timestamp ": "2020 -01 -16 12:00:00" ,

"message ": "failed to parse feature <125caf57 -2221 -4a11 -

a66c -f01a7eba5ae1 >",

}

• System messages are messages used for orchestration or handshakes between ser-
vices. For example, in order to establish communication between a new service
that is connected to the system infrastructure and other services, the new service
sends out a system wide message to make other services aware of it.

{

"timestamp ": "2020 -01 -16 12:00:00" ,

"status ": "ready",

"type": "database",

"url": "http ://192.168.0.42:8080" ,

}

In order to make the messages exchanged in RabbitMQ as slim as possible, the
communication design relies heavily on RabbitMQ’s topic exchanges. Topic exchanges
allow the use of routing keys to route messages to specific queues connected to an
exchange. Furthermore, every scenario is given its own dedicated topic exchange.

RabbitMQ Queue
RabbitMQ
Exchange

RabbitMQ
Consumer

RabbitMQ
Producer

Service A Service B

Figure 4.2: Communication between two services via the RabbitMQ message broker.

Using the message types above, a simple routing key scheme can be established.
The first word of the key is used to differentiate between scenario related log or system
messages and service messages. Note that, since a process is invoked by service, process
messages always have the ID of its corresponding process as the first word of the routing

23

4. Concept

key. However, because every scenario has its own exchange, the scenario itself does not
need to be part of the routing key. Thus, the first section can for example be log, system,
or serviceID.

The second word is used to give more details about the message. Scenario related
log messages for example use the second section of the routing key to specify the log
level. Service messages use the second key to differentiate further between either process
messages, or service log, or status messages. Examples for the second section are status,
log, or processID. The third and following sections are analogue to the second one, with
the difference that it is used for processes.

The following examples for routing keys make use of the pattern described above:

• service42.status contains a status messages sent by the service with the ID ser-
vice42.

• service42.process123.log.error contains a log message, with the log level error, sent
by the process with the ID process123 that is invoked by the service with the ID
service42.

• service42.process123.status contains a status messages sent by the process with
the ID process123 that is invoked by the service with the ID service42.

Message Format. Due to the use of one topic exchanges and routing keys, the body
of the messages exchanged does not have many requirements. Furthermore, scenario,
service and process information is not required within the messages, as they can be
queried from system services by using the IDs found in the routing keys and the exchange
name. As a result, most fields used within the message body are optional or service and
scenario specific.

4.3 Provenance Service Architecture

The Provenance service is a system service that connects to scenario specific exchanges
in order to generate and store provenance. This section further describes the provenance
service’s requirements and architecture. Given the application and communication de-
sign described in the previous section, the provenance service must fullfil the following
requirements within the orchestration system:

• The service needs to be able to listen to scenario specific RabbitMQ exchanges.

• It needs to be able to establish or revoke connections to exchanges during runtime
in case scenarios are added or removed.

• The provenance service needs to be able to listen and respond to global messages
in order to provide information on how to retrieve the stored provenance.

Additionally, the service must meet the following performance and design goals:

24

4.3. Provenance Service Architecture

• The provenance service needs to be able to handle high loads and scale when the
application demands it.

• It needs to be able to generate provenance with as little information as possible.

• The service needs to store provenance efficiently.

• The service needs to provide API endpoints to allow other services or administra-
tors to access the data.

Provenance Service

RabbitMQ
Consumer

RabbitMQ
Producer

Database
Connector

Main Routine

Dgraph Database

RabbitMQ Server

System
Exchange

Queue
Scenario
Exchange

API Webserver

Figure 4.3: Provenance service architecture.

Provenance Messages. Services that want to provenance to be produced send out
provenance specific messages. Thus, in addition to the existing message types, a fourth
message type is introduced.: Provenance Messages. Provenance messages are routed
by a dedicated routing key within a scenario’s dedicated exchange. Expanding the

25

4. Concept

example earlier, Listing 4.1 shows an examplatory provenance message. Because every
provenance message corresponds to exactly one provenance entity, provenance messages
provide a single string for the output filed. However, the input field is defined as a list
of inputs, because a single entity can be derived from multiple ancestors.

{

"timestamp ": "2019.12.01 12:12:12.000" ,

"input": ["b4c09cf6 -0b22 -4de6 -b8da -19 a7c8158061 "],

"output: "ea46abad -0f34 -4aac -be6e -197891 d79e3d"

}

Listing 4.1: Example body of a provenance message.

Communication Components. The provenance service needs to be able to com-
municate with the orchestration system. This is achieved by connecting RabbitMQ
consumers to the system exchange, an exchange dedicated to provisioning and system
wide messages. Additionally, the service needs a RabbitMQ producer component to
send log messages, metrics and general information such as the API’s URL to the sys-
tem. Each scenario has a dedicated exchange and hence the provenance service starts
a consumer for each scenario exchange. The consumer listens to a queue that is bound
to the exchange using a binding key that matches a provenance message’s routing key.

Extracting and Storing Provenance. The message body of consumed messages
alone does not contain enough information to generate sufficient on PROV-DM based
provenance. The provenance service makes use of the system services to accumulate
all further information required to build provenance based on the basic components of
PROV-DM. As shown in section 2.2, the basic components of PROV-DM are activities,
agents and entities. Considering the applications design as well as the basic definition
of processes and services, this data model can be applied as follows.

By definition, a process is the actual execution of a task described by a service.
Hence, they are considered an activity from a provenance perspective. In addition,
the service is responsible for the execution, as it contains all necessary information. A
service can thus assumed to be an agent. However, the service has been designed by an
user, which makes the user an agent for whom a service acted on behalf of. The last
component, entities, are simply the in- and output data that is used by, or generated
by a process. The input data is the original entity and the output data is assumed to
be its derivative. This also applied when multiple inputs get merged into one output or
one input is split into multiple outputs.

Assuming that a process sends out a provenance message containing information on
in- and outgoing data, provenance can be extracted relatively easy. The information on
in- and output from within the message body can be used to cover the original entity and
its derivative. As mentioned earlier, scenarios use routing keys that contain the service-
ID and the process-ID when sending producing provenance messages. The sections on
the routing key can be used to fill the remaining components. For example, a routing
key service42.process123.provenance used for a provenance message on an exchange with

26

4.3. Provenance Service Architecture

Route Message

Create Empty Entity

Database Connector Database

RabbitMQ Consumer Provenance Service System Service

Handle Entity

Fetch User & Service Details

Result

Prepare Entity

Store Entity

Execute Database Mutation

Figure 4.4: Sequence diagram for the provenance generation of a single provenance
entity.

the ID scenario1 can easily be broken down into activity related, process-ID, and agent
related, service-ID, information. These IDs can be used to query system services for
information on what exactly the process did, how long it ran, or even who a service
was created by. With all information gathered, a provenance graph can be created.
Figure 4.5 is a visualization of a simple provenance graph that represents the generation
of a single provenance entity and all parties involved. This graph is then stored in a
database.

Service Interface. In order to make stored provenance available to the application
as well as other services a server based API is required. To be able to work with prove-
nance both visually and with the provenance data, endpoints that offer a data driven
representation of the graph are required. While the graph’s root is usually an entity
component, users might want to choose different components as root nodes depending

27

4. Concept

Figure 4.5: Provenance graph of a single entity (blue) and the directly involved par-
ties, color coded as follows: ancestor entity (green), activity (pink), agent (orange),
responsible agent (magenta).

on their use case. For example, one user wants to know which entity the predecessor
of a derivative entity was, while another user wants to see all entities generated by the
processes spawned by a specific service. Hence, the service interface needs to support
graph representations with all three basic provenance components as root nodes. In
addition to endpoints offering a graph representation based on an entity, the API of-
fers endpoints to query detailed information on single provenance components such as
agents. A suitable approach for a service interface like this is a queryable API.

28

Chapter 5

Implementation

Based on the observations in Section 4.3, a prototype is developed. The prototype is
used to proof the concept and architecture of the provenance service and is thus used
for evaluation.

It has to be noted that some system components are not implemented yet. This is
due to the fact that the application, and thus orchestration system and system services
are in a pre-development state. Some of the missing components, such as the system
services that handle orchestration and provide detailed information on scenarios, services
and processes, are required to generate provenance. However, these services are not part
of the provenance service and thus won’t be further discussed in the thesis. Some of the
missing behaviour is replicated using auxiliary scripts or is hard-coded into the service.
Their theoretical concepts and how they would be used if they were implemented have
been described in the previous chapter.

The system can be divided into four main components. The first one is the commu-
nication component that creates and manages the RabbitMQ consumers and producers.
The second component is the actual provenance service, which receives so called deliver-
ies from the consumers. Deliveries are a wrapper for an unprepared provenance entity.
The service first accumulates missing data and prepares the provenance entities to be
stored in the database. Prepared provenance entities are batched and lastly stored in the
database. The third component is the database connector, which manages the database
session and offers functionalities used during the accumulation process and provenance
retrieval. The final component is the API-Server. While the server is deployed in its
own instance, it makes use of Go’s package system to reuse the communication and
database connector components.

5.1 Technologies

The service and the required RabbitMQ components are implemented in Go. Prove-
nance generated by this service is stored in Dgraph, a distributed graph database. In-
stead of a commonly used REST-API, the provenance services uses GraphQL to support

29

5. Implementation

queryable API endpoints. This section introduces the technologies used to implement
the provenance service.

Go. Go1 is an open source programming language developed by Google engineers. It
follows C’s basic syntax and borrows ideas from various other languages. The language
is designed to be fast to work with, i.e., fast compile times, easy deployment and a rich
standard library.

Go has been selected because of several reasons. It is subjectively easy to work
with and allows quick prototyping. Moreover, it has very good support for event-based
asynchronous applications and offers decent scalability. This is achieved with goroutines,
which are lightweight threads that are managed by the Go runtime. To communicate
between goroutines, Go uses so called channels. They are allocated like maps and arrays
and act as a queue. There are different types of channels; buffered and unbuffered
channels. Go applications usually make heavy use of structs. Structs can be used to
bind attributes and functionalities to objects. While structs are in some way similar
to classes found in object oriented languages, they are still different since Go uses a
different approach. While still a comparatively young language, Go is mature enough
to be consistently rising in popularity in developer surveys and actual production usage.
Popular projects include Docker and Kubernetes.

Go offers all the tools necessary to build an event-based provenance service and an
API-Server. Its big and well maintained standard library removes the need of frame-
works and allows for a slim application without bloat.

Dgraph. Provenance is highly relational meta data that can be represented in form of
a graph. Storing graphs in relational databases like PostgreSQL would require multiple
join operations. This has a big performance impact when querying the database. Thus,
graph databases are a very good choice for storing provenance.

The most commonly used graph database is Neo4j2. Dgraph, however, provides
a fresh and interesting approach to graph databases. Even thought it is a relatively
young database, Dgraph offers promising features with seemingly good scalability and
performance.

GraphQL. In section 4.3, one of the mentioned requirements for the provenance ser-
vice is to offer the user freedom when querying provenance data. He should be able
to receive graph representations independent of the chosen provenance component as
well as be able to extract only the necessary information on a single provenance object.
GraphQL allows this feature. Additionally, while multiple ways a user can query prove-
nance is supported, the used data model is static and thus the types and field are also
static. The fact that types and fields are not dynamic allows a simple implementation
of the GraphQL required functions.

1https://golang.org/
2https://neo4j.com/

30

https://golang.org/
https://neo4j.com/

5.2. Initialization

5.2 Initialization

For the time being the service initialization is hard-coded into the service. However,
assuming the system services were implemented, the hard-coded information such as
URLs to system services and databases, as well as exchange names, would be provided
by the orchestration system after a successful handshake.

Upon start-up, the service first fetches collects requirements such as service and
database URLs and stores them in a configuration struct. Using the information con-
tained in the configuration struct, connections to the database and RabbitMQ are estab-
lished. Once a connection the RabbitMQ server is established, the required consumers
and producers are initialized. Lastly the provenance service itself is invoked in form of a
goroutine that receives messages from the consumers via a Go channel shared between
the components.

5.3 Communication

The orchestration system and the connected services use RabbitMQ for communication.
RabbitMQ is an implementation of the AMQP standard and hence any technology or
library that implements this standard can be used to communicate within the system.
The Go package AMQP3 is used to implement the required consumers and producers.

While the provenance service uses multiple consumers to listen to multiple prove-
nance sources at once, their behaviour is exactly the same, because they are just multiple
instances of the same consumer. Thus, only a single implementation of a provenance
consumer is needed. The only exception are the consumers used for orchestration or
system messages, which are not further discussed.

The consumer described in this section assumes that provenance messages are sent
using dedicated provenance routing-keys.

Provenance Consumer. The connection created during initialization is passed down
to and shared between all provenance consumers. For each provenance source, or ex-
change used by a scenario, a consumer is initialized. While consumers share a connec-
tion, each consumer creates its own RabbitMQ channel to connect to queues. This is
due to the fact that channels are not thread safe4 and each instance of a consumer runs
within its own goroutine and hence its own thread. It is to note that, while the statement
about thread safety is for the official Java client, the same principles can be applied to
any implementation of AMQP, including the one used for this implementation. Once
a RabbitMQ channel has been created, the consumer declares its dedicated exchange
and connects to a queue. Finally the queue is bound to the exchange by a binding key
that matches the pattern used dedicated provenance routing keys. The pattern used to
match any provenance message that is sent with a dedicated provenance routing-key is
#.provenance. This pattern matches any routing-key that has the word provenance as

3https://github.com/streadway/amqp
4https://www.rabbitmq.com/api-guide.html

31

https://github.com/streadway/amqp
https://www.rabbitmq.com/api-guide.html

5. Implementation

its last section, for example service42.process123.provenance, service42.provenance and
provenance.

Messages received by the RabbitMQ consumer are used to initialize structs that
represent provenance entities. To do so, an empty struct is initialized and some of
fields, like the entities ID, its ancestors ID, and all other fields that can be filled with
the information contained in a provenance message are filled. The entity struct uses a
nested structure that later on can be easily parsed to the JSON, which is required for the
database mutation. An exemplary JSON representation can be found in Appendix A.
Each nested object represents a provenance component and the names of each nested
object represent the relation between the nested object and its higher level component.
Note, that the UID field of each object contained in the struct is initialized with strings
in the format _:<ID>. The UID field is used to connect related provenance objects and
will be further explained later. The entity struct is then forwarded to the provenance
service using a shared Go channel. All consumers use the same channel to forward their
messages.

5.4 Provenance Generation

Due to the use of a message broker, the provenance service is required to work asyn-
chronously and event based. It is thus implemented in form of a goroutine that receives
deliveries from the communication components. However, because of the database’s im-
port handling, more in Section 5.5, incoming deliveries need to be handled in batches.
Thus, an auxiliary goroutine is implemented. This goroutine, as seen in Listing 5.1, for-
wards deliveries to the main goroutine, or, if no new delivery has been received within
a certain time window, uses the commit channel to tell the main goroutine to write to
the database before the batch is full.

The auxiliary goroutine makes use of Go’s select statement. Select statements are
used to handle multiple operations based on channels. By design select statements block
until a case can be run. The select statement used consists of two cases. The first one
is run when a new entity (delivery) is forwarded by a consumer, while the second case
is run automatically after a timer expires and is used to prematurely commit a batch if
no new entity has been received within a certain time window. Due to the usage of an
infinite loop, the select block is repeated whenever one of the cases is run. This allows
a permanent stream of entities to the main goroutine. If the second case is run, the
execution is blocked until a new entity is received.

go func() {

for {

select {

case derivative := <-tracer.deliveries:

derivatives <- derivative

case <-time.After(batchTimeout):

commit <- struct {}{}

derivative := <-tracer.deliveries

derivatives <- derivative

}

32

5.4. Provenance Generation

}

}()

Listing 5.1: Gateway goroutine used for forwarding entities and committing if no
entity has been received in a certain time window.

Before the deliveries forwarded to the actual provenance service can be used as
provenance, additional information needs to be accumulated. To do so, the information
within the exchange name and the routing-key contained in the delivery is used to
fetch the required information from system services. As described in Section 4.2, each
section of a routing-key, and the exchange name itself, are unique IDs used within the
orchestration system to identify processes, scenarios and services. After accumulating
all necessary information, the provenance object is then prepared for storage within the
database.

Accumulating Information. System services offer API endpoints, which can be
used to fetch the required information using unique IDs contained in the routing keys.
Using the unique IDs HTTP requests are sent to the endpoints for service and user
information. The services return JSON objects that contain the requested information.
Listing 5.2 shows an exemplary response to a request about details of a service. The
information returned by the services are then used to fill the missing fields in the entity
struct.

{

"id": "125 caf57 -2221 -4a11 -a66c -f01a7eba5ae1",

"name": "Split Feature -Collection",

"description ": "Splits a Feature Collection into single

features",

"type": "service",

"createdBy ": "2c2755df -ca17 -4a01 -a4a5 -bfd91b3e18f8"

}

Listing 5.2: Exemplary response body of a GET-request to a system service to retrieve
information about a service.

Storage Preparation. Once the information on the provenance components activity,
agents and entities is accumulated, the provenance object can be prepared for storage.
When a provenance object is inserted into the database, two cases need to be considered.
Firstly, a provenance component, namely activity, agent or entity, is not present in the
database. In this case the initial string values of the UID fields are used to later identify
the nodes. Secondly, if any component is present within the database, its initial string
value is replaced with the UID used within the database. Only the strings of present
components are replaced, while the not present ones keep their initial string values. In
order to determine whether a component is present in the database, the database is
queried using the database connector component. Listing 5.3 shows the query used to
retrieve the UIDs of all possible provenance components, if it returns an empty value,
the component is not yet present. It is to note that, in addition to the three main

33

5. Implementation

components, an auxiliary component supervisor is used within the preparation steps.
This is to differentiate between the acting agent, the agent who is responsible for the
process, and the supervising agent, the agent whom the acting agent acts on behalf of.
The retrieved database UIDs are cached in a simple map to avoid unnecessary repeated
database transactions. The map uses the IDs from the orchestration system as key and
the database’s UID as value. If the query result was empty, the initial string value is
stored instead. In case that an ID is present as a key in the cache, the value mapped to
the ID is always used, even if it is the initial string value.

QueryAllUIDsByID = ‘

query All($entity: string , $activity: string , $agent: string ,

$supervisor: string) {

entity(func: eq(id, $entity)) {

uid

}

activity(func: eq(id, $activity)) {

uid

}

agent(func: eq(id , $agent)) {

uid

}

supervisor(func: eq(id , $supervisor)) {

uid

}

}‘

Listing 5.3: Dgraph query to retrieve internally used UIDs by IDs that have been
assigned by the orchestration system.

5.5 Provenance Storage

After all node IDs are set, the prepared provenance object can be stored in the database.
The provenance service uses the graph database Dgraph to store provenance objects.
While Dgraph supports concurrent read operations, concurrent writes can be problem-
atic. When two or more transactions want to mutate the same database entry, for
example, two operations want to connect a new activity node to an existing agent, only
one of those operations succeeds while the others fail. However, handling all provenance
objects sequentially, as in creating a single database transaction that fills the ID field
of present components, is also not beneficial due to it resulting in multiple small gRPC
requests per object and hence slowing it down further. Thus, to increase the write
performance of the database, the provenance service batches all incoming provenance
objects. This is achieved by appending every new provenance entity to a list of entities
that is kept until the batch is committed.

Batches are committed when a predetermined batch size is reached, or the commit
signal is sent by the gateway goroutine, because no new provenance message has been
consumed within a certain time window. When a batch is committed, its collected
entities are converted to a list of JSON objects and embedded in the mutation field

34

5.5. Provenance Storage

of a Dgraph transaction. Using the database connector component the transaction is
executed.

Batch Imports. The initial string values of a provenance component’s UID consist
of the components name followed by a number, for example :entity-1. The number
indicates the current size of the batch and is reset together with the batch list when the
limit is reached. These initial string values are variables used to reference nodes within
a batch. This is possible due to how Dgraph, and specifically RDF, handles nodes.
Before going into detail, it needs to be considered how Dgraph handles mutations.
Every mutation run in Dgraph uses the RDF N-Quad format. If a mutation is not in
the RDF format, like the JSON mutations used for the provenance service, Dgraph first
converts the mutation into RDF before proceeding. To draw edges RDF uses a node
identifier followed by the edge’s predicate and another node identifier, for example:

<0x01 > <name > "Alice" .

If the identifier is unknown, or simple not present, a blank node has to be used, which
is later replaced by the internally assigned UID. Blank nodes are essentially variables
that only exist during the lifecycle of a single database mutation.

When inserting a batch of objects into the database, there are multiple possible
scenarios where blank nodes are required. However, by using the cache map described
in Section 5.4, the initial string values can easily be used to draw edges between new
nodes within a batch, because they follow the RDF specification for blank nodes. For
example, if the key with the ID process123 is mapped to the value :activity123, and an
entity contains a nested activity object with the same ID, the value of its UID field is
overwritten with the value from the cache, in this case :activity123. This allows Dgraph
to draw an edge to that specific node and avoids duplicate nodes.

Listing 5.4 shows the routine that builds and executes the database mutation. It
accepts a batch of prepared provenance entity object that get marshaled into a list of
JSON encoded entities, as shown in appendix A. The resulting list is then bound to a
Dgraph transaction’s mutation field and executed. The UID’s assigned by Dgraph are
returned.

func (c *Client) RunMutation(mutation *[]* util.Entity) (*api.Assigned

, error) {

\\ initialize new database transaction and discard it when the

function returns

txn := c.conn.NewTxn ()

defer txn.Discard(context.Background ())

\\ convert the mutation (list of entities) to JSON

payload , err := json.Marshal(mutation)

...

\\ initialized new dgraph mutation object

\\ CommitNow is used to indicate that no other mutations or

queries are part of this transaction

35

5. Implementation

mu := &api.Mutation{

CommitNow: true ,

}

\\ bind the JSON payload to the mutation and execute it

mu.SetJson = payload

assigned , err := txn.Mutate(context.Background (), mu)

...

return assigned , nil

}

Listing 5.4: Method for committing a batched Dgraph mutation.

5.6 GraphQL Integration.

In order to retrieve provenance from the database, an independent GraphQL API server
is developed. Just like the actual provenance service, the API server uses a single
producer and consumer to listen and respond to system messages for orchestration and
service awareness. The following section further explains the server-sided GraphQL
integration using GraphQL’s own Go implementation.

To make use of GraphQL, a web server needs to be implemented first. This is
achieved using the http package of Go’s standard library. Go’s web server uses handler
functions to register functions to specific URLs. For example, a URL http://api-host/api
would be routed to the handler function that is bound to /api. A single exposed endpoint
is enough for complete provenance retrieval using GraphQL.

GraphQL integration into the API is achieved, by binding a GraphQL schema to an
API’s handler function. The schema contains the configuration of both query and mu-
tation objects. Since the API is read-only, only the query configuration is implemented.
The configuration of mutation objects will not be further described in this section.

GraphQL Schema. A GraphQL schema is an object that consists of the complete
configuration of mutation and query objects. GraphQL objects use fields to bind in-
formation to specific keys. The query object used to realise the provenance API uses
four fields. One field for each provenance component: activity, agent and entity and a
field for an experimental workaround used to retrieve a predefined graph structure, the
workaround query is further explained in Section 6.6. Listing 5.5 shows an exemplary
implementation of a single field query object.

graphql.ObjectConfig{

Name: "Query",

Fields: graphql.Fields{

"entity ": &graphql.Field{

Type: entityType ,

Description: "Get entity by id",

Args: graphql.FieldConfigArgument{

"id": &graphql.ArgumentConfig{

36

5.6. GraphQL Integration.

Type: graphql.String ,

},

},

Resolve: func(p graphql.ResolveParams)

(interface{}, error) {

return resolveQueryEntity(db, p)

},

},

},

}

Listing 5.5: GraphQL field object for a provenance entity.

GraphQL Type. In order to define the properties of each GraphQL field, a type
object is implemented for each provenance component. Using the figure above as an
example, the entity field is of type entityType.

var entityType = graphql.NewObject(

graphql.ObjectConfig{

Name: "Entity",

Description: "Provenance Entity Object",

Fields: graphql.Fields{

"uid": &graphql.Field{

Type: graphql.String ,

},

"id": &graphql.Field{

Type: graphql.String ,

},

...

},

},

)

Listing 5.6: Type object used to describe provenance entities.

All three provenance component fields follow the same schema and only some field
names are different. However, the graph field greatly differs. Instead of simple key value
pairs, such as id, or name, the workaround types’s uses a single field that is required to
be complete graph representations encoded as JSON. Thus, the scalar used for the field
needs to be a custom scalar. Custom scalars require a serializer and parser for literals
and values to be implemented specifically for that scalar. Go usually decodes JSON
objects into structs for manipulation. However, it also offers an additional JSON type
called json.RawMessage. This type is an alias for byte arrays and can be used to store
JSON encoded strings. Therefore, when encoding, or marshalling, a string into JSON
using the Go standard library, the result is of type json.Rawmessage.

With that in mind, the parsers and serializer for custom scalars are relatively easy
to implement. In case of serialization the value, or a pointer to the value is returned if
the type is either a json.RawMessage, or a pointer to one. For parsing, the value is cast
to json.RawMessage, or a pointer to one.

37

5. Implementation

GraphQL Arguments. The arguments used for each field is usually the unique ID
that has been distributed by the orchestration system. However, arguments may also
contain properties that refine queries. For example, a property that defines a graph’s
depth can be declared that can be later on used by resolvers to fine tune a graph
representation.

GraphQL Resolvers. Each GraphQL type has its own resolver function. Addition-
ally, each field of a type that represents a provenance relation has a resolver function
too. The resolver functions query and return single database entries, and all their prop-
erties, by IDs and UIDs, thus a resolver for an activity object only returns one single
activity object. While the IDs are arguments given to the resolvers, UIDs are given to
nested resolvers by their parent resolver. When querying nested objects from GraphQL,
the GraphQL server builds a chain of resolvers, which after execution connects the sep-
arate results to a single structure. As described in Section 2.4, the body of a GraphQL
query contains the field and the field’s properties that should be returned by the query.
An implementation of a filter function to only return the requested fields is therefore
not required as it is handled by the GraphQL server itself. The resolver used for the
workaround query object simply returns the result of the database query.

5.7 Use Case Scenario Realization

In order to test and evaluate the provenance service and its capabilities, the tank import
use case is implemented. The use case consists of two scenarios. The first scenario is
used to prepare and import a feature-collection, and the second to correct features that
have been rejected by the database during the import step. Each scenario consists of
several steps or services. This section explains how these services are implemented.

Because of the missing system components, IDs and other required information
is hardcoded into the messages that are consumed by the provenance service. While
parts of the messages are hardcoded and mocked, the services used by the scenario
are actually implemented. The input data for the scenario is provided by Microsoft’s
USBuildingFootprints GitHub repository5 .

Scenario Trigger. In the fully implemented orchestration system, this scenario would
be triggered by an event. This means that once the scenario has been orchestrated by
the system, and therefore initialized, no user input is required to start the service chain.
Instead, once an input file is present, the scenario would be notified and made aware of
the files location. For the exemplary realization of this use case however, the services
of each scenario is started manually. Due to the limitations the implemented services
always have files as both in- and output. The file names used are unique IDs and are
therefore suitable to be used as identification for provenance components.

5https://github.com/microsoft/USBuildingFootprints

38

https://github.com/microsoft/USBuildingFootprints

5.7. Use Case Scenario Realization

Splitting the Feature Collection The first processing service is a simple shell script
that splits a single feature-collection into multiple separated features. This step is
necessary because it is the used import format by the tank database. Additionally,
the geocoding service also supports the format, which is why this service is executed
first. It utilizes MapBox’s tippecanoe-json-tool6 to split feature collections into separated
features. To simulate a parallel workflow, the script is given a GeoJSON file as input
and, after splitting the feature-collection, puts out multiple single feature files. The
resulting files can then be further processed independently. The tool is executed as
follows:

tippecanoe -json -tool INPUT_FILE > OUTPUT_FILE

Reverse Geocoding. The features contained in the feature-collection, and thus also
the separated features, contain only the coordinates and the geometry of a given feature.
Before the features can be stored, they therefore need to be given properties. This is
achieved by reverse geocoding. Reverse geocoding is the process of assigning human
readable properties, such as postal codes, street names, and more, to coordinates.

The geocoding service is implemented as a one-line shell script that passes the input
files to an already existing NodeJS script, which sends request to a geocoding server
and sets the properties of a GeoJSON feature accordingly. For the actual geocoding an
internally hosted instance of Nomantim7 is used. It then outputs a new file with the
geocoded feature.

Import. The import service is also realized as a one-line shell script that calls the
curl command. It accepts an input file that contains one or more seperated features
and sends them via a POST request to the Tank database. The database then returns
the internally distributed IDs. These IDs will be further used for identification and are
thus also stored in the resulting output file. The curl command used is as follows:

curl -s -X POST -H "Content -Type: application/json" -d FEATURE

TANK_URL > OUTPUT_FILE

Import Error Correction. Import errors are handled in a separate scenario. Like
the import scenario, this scenario is started manually, whereas in the fully developed
system it would be triggered by an event invoked by the completion of the import
scenario.

In this scenario a one-line shell script polls the exhauster database for rejected fea-
tures and stores them in an output file. The features downloaded are in the feature-
collection format and hence need to split again by the same method as described earlier.
After splitting, the features are then sanitized using a python script. In the script pre-
determined fields are corrected. Currently, the correction is purely exemplary and only

6https://github.com/mapbox/tippecanoe
7http://nominatim.org/

39

https://github.com/mapbox/tippecanoe
http://nominatim.org/

5. Implementation

checks the postcode field. The postcode usually contains a string but needs to be con-
verted to an integer during the database import. If the value contains anything but
numbers, this is prevent and thus, in the exemplary script, anything that is not a num-
ber is removed from the field. If a rejected feature has a correct postcode field, it can
be assumed that the problem is something else and is thus discarded to simplify the
implementation. The remaining, sanitized features are deleted from the exhauster and
lastly re-imported into the Tank database. In an advanced use case, this scenario would
trigger itself again if features have been re-imported. The service implementation can
be described with the following code:

regex = r"^([1 -9]*?) :"

with open(input_file_path) as input_file , open(output_file_path , ’a

+’) as output_file:

feature = json.load(input_file)

post_code = feature[’properties ’][’postcode ’]

matches = re.search(regex , post_code)

if matches:

feature[’properties ’][’postcode ’] = matches.group (1)

json.dump(feature , output_file)

5.8 Deployment

The compiled executables of the provenance service and the API web server are very
small. Additionally, since configuration is in theory handled by the orchestration system,
no configuration files are required. As explained earlier, since the system is not available,
the configuration required for further testing and evaluation is hardcoded instead. Due
to the executable’s sizes and the unproblematic configuration, the service as well as
the API web server can easily be deployed in form of Docker images. Moreover, from
“scratch” Docker images can be used, because the resulting executables contain Go’s
runtime and thus the base image does not have to contain a Go runtime or other
requirements. This results in rather small Docker images.

Because Dgraph, RabbitMQ and the applications required for the tank use case
provide Docker images, docker-compose can be used for deployment. Note, that this is
only applicable for testing and evaluating the provenance service and its components. A
full deployment of the entire orchestration ecosystem would require more complex tools
such as Ansible8, and would consist of multiple cloud computing nodes.

8https://www.ansible.com/

40

https://www.ansible.com/

Chapter 6

Evaluation

In this chapter the concept, the implementation and the used technologies are evaluated.
The evaluation is based on a simulation of the tank data import use case. The use case
is simulated to avoid unecessarily long processing times and avoid workarounds that
would be necessary because the orcehstration service is not yet implemented.

The evaluation is done with datasets containing k = 10, k = 1000 and k = 10000
features. All three datasets are subsets of the building footprints of Hawaii1 (k = 252891
features). The tests were executed on a MacBook Pro 13” (2017 model) with 16GB
memory a 3,1 GHz dual-core Intel Core i5. During the tests all required applications
were run locally. This includes a RabbitMQ server, a Dgraph database, a web server
to simulate HTTP requests to fetch information from system services, the provenance
service and its corresponding API web server.

The graph visualizations are generated by Dgraph’s management interface Ratel.
Due to limited configurability of the admin interface, the color coding of the graphs
could not be standardized. Furthermore, the name of some edges could not be hidden,
which results in the first letters of the edge names appearing on some drawn edges.

6.1 Use Case

The tank import use case makes use of multiple services to prepare features before finally
storing them in the tank database. The use case consists of two separate scenarios. The
first scenario is the preparation and initial data import, the second one is the correction
and reimport of rejected features. While the use case is divided into two scenarios,
the resulting provenance is linked. This is because the initial inputs for the correction
scenario are a subset of the output of the last step before the actual data import, the
geocoding service. In this section the resulting provenance, its quality, the services
performance and challenges related to the use case are discussed and evaluated.

Simulated Services. As pointed out earlier, the evaluation is based on a simulation
of the scenarios instead of the execution results of the actual services. From a provenance

1https://github.com/microsoft/USBuildingFootprints

41

https://github.com/microsoft/USBuildingFootprints

6. Evaluation

perspective, the use case can be realized in a single one-time executed scenario. This is
possible because of how the data generated by the scenarios is connected. Furthermore,
the reason the use case is split into two scenarios in the first place is that the correction
scenario is allowed to run asynchronously. However, in order to simulate each service
and their in- and outputs need to be considered.

Section 5.7 describes the services used by each scenario and their respective imple-
mentation. The services are file based, and thus instead of sending the results through
the message broker, the results are collected and stored in single or multiple files. Ser-
vices with multiple outputs generally indicate parallelisation, as one process of the
following service is invoked per output. In a simulated setting the parallelisation can be
realised without the need of creating multiple files.

The services are simply simulated by sending provenance messages that contain the
IDs generated by the previous simulated service as input and new random generated IDs
as output. This is possible because from a provenance perspective the data contained
in the files can be completely ignored and only the IDs contained in the provenance
messages are important as they are used to link the different provenance components.
Additionally, during provenance generation the service does not differentiate between
an activity that maps a single entity to a single new entity, or an activity that maps a
single entity to multiple new entities or vice versa.

The only exception to the file based workflow is the actual import into the tank
database and its fan-out to the exhauster. However, after inserting data into the
database, the tank returns the internally assigned ID. If the scenario would not fan-
out and thus result the import of a single feature at the end of each parallel process
chain, a complete mapping of one feature to one entry in the tank database could not
be guaranteed. Moreover, the tank also assigns IDs to rejected features, but does not
return them. It is to note that currently the tank only provides the ID of rejected
features in its logs. For the purpose of this simulation it is assumed that the IDs of
rejected features are returned in the request. Which can be further used to connect
the features contained in the feature-collection that is returned by the exhauster to the
features prior to the actual tank import.

To simulate the fan-out to the exhauster, only 90% of the results of the geocoding
step are imported. The remaining results are assumed to be incorrect and thus in the
exhauster. They are later used during the exhauster scenario. It is assumed that not
all incorrect features can be sanitized. Thus, further 50% of the remaining features are
discarded before the simulation of the sanitization service in the exhauster scenario.

Even though the actual services are not used in the evaluation, exemplary results of
each service that is simulated can be found in the appendix.

6.2 Provenance Generation.

Provenance generation is a very important aspect of the provenance service. To reduce
the amount of database requests required to store provenance in the database, new

42

6.2. Provenance Generation.

database entries are batched. An exemplary, for mutation prepared, provenance entity
that is contained in a batch can be found in Listing A.1 in the appendix.

The following discusses the service’s performance during the generation of prove-
nance based on the simulated use case. It is to note that the simulated provenance
messages are all send without any artificial delay. Hence, there is no delay in the prove-
nance stream that could cause inconsistencies in the performance measurements.

First the simulation runtimes are evaluated. To do so simulations with dataset sizes
of k = 10, with n = 10 executions, k = 1000, with n = 10 executions, and k = 10000,
with n = 5 executions, are run. Due to the size of the last simulation, the database has
been wiped before each of its five executions. Table 6.1 shows the average duration for
the entire simulation, the average lifetime of a single batch within a simulation, as well
as the amount of batches required to build the corresponding provenance graph and the
amount of new database entries per simulation. A batch lifetime is defined as the time
between its creation and its commitment to the database. The batch size for all tests is
j = 1000.

Simulation Input Size 10 1000 10000

Batches per Simulation 1 4 33
Avg. Simulation Duration [s] 0.1763 7.0707 69.9893

Avg. Batch Lifetime [ms] 176.3931 1730.7859 2120.8885
New Database Entries per Simulation 33 3201 32001

Table 6.1: Average duration of simulations and the corresponding batches.

The results show that the average time it takes to completely generate provenance
for a simulation directly correlates with the amount of batches the simulation has been
divided into and their respective lifetimes. Furthermore, the total runtime of the k = 10
is equal to the time it took to complete the batch, because the entire simulation fits
within a single one. The average batch lifetimes for k = 1000 and k = 10000 are roughly
equal. It is to note that the fourth batch of the k = 1000 simulation only contains 201
provenance entities and is hence four-times faster than the previous three batches. While
the k = 10000 simulation also contains an incomplete batch as its last batch, the total
amount of batches is far higher. Thus, the incomplete batch has almost no impact on
the average. When excluding the last batch from the measurements of the k = 1000
simulation, the average batch lifetimes are equal. The exact amount of data imported
into the database is a result of the 10% and 50% feature reduction during the scenarios.

Batch Time Spread. The previous results show that batches are computed compar-
atively slow. Within the life time of a batch at least two HTTP requests are made to
fetch the missing data, for example an agent’s name, its type and a description in case
of the agent being a service. Additionally, the Dgraph database is queried for every in-
volved component. To avoid multiple queries on the same component, the query results
are cached. However, the cache only exists on a per batch basis and is thus cleared
after a batch is committed. The data fetched is then processed and used for a database

43

6. Evaluation

mutation. Table 6.2 shows the average (n = 33) time spread within a batch life time.
The results are measured from the beginning to the end of each computation step.

The time spread shows that 99.6% of the time is spent at the database mutation.
The time spent for computation and HTTP requests in insignificant and needs no further
evaluation. This indicates a problem with the write-performance of Dgraph and will be
further evaluated in Section 6.5.

Total 2092.0503ms

Database Mutation 2085.6917ms

HTTP Requests 0.2380ms

Table 6.2: Average time spread of processing times within a transaction batch (n = 33).
Each batch contains k = 1000 provenance entities

6.3 Provenance Retrieval.

The provenance service is a composite service consisting of the generation service and a
web server that serves a GraphQL API. The GraphQL queries are passed to the API as
a string within the query parameter, for example: localhost/graphql?query={entity(id:"

ba75ac00-09ae-49d4-b20f-48e4ec03e75c"){uid,id,creationDate}} To test the GraphQL API
a simple query, Listing 6.1, that returns the IDs of all provenance components that are
directly involved in the generation of a single new provenance entity is run against the
GraphQL API. The query is run n = 10 times to calculate the average request time.
The average will be used as reference in comparison with a GraphQL type that uses
the same query but ignores GraphQL’s resolve chains, and the same query run directly
against the database. All queries have been executed after the k = 1000 simulation has
been executed. Therefore at the time of each query 32001 database entries are present.
Network delay is not considered in the evaluation.

{

entity(id:"ba75ac00 -09ae -49d4-b20f -48 e4ec03e75c ") {

id ,

wasDerivedFrom {

id

},

wasGeneratedBy {

id,

wasAssociatedWith {

id,

actedOnBehalfOf {

id

}

},

used {

id

}

}

}

44

6.3. Provenance Retrieval.

}

Listing 6.1: GraphQL Query to retrieve an entity and all provenance components that
were directly involved in the creation of it.

The GraphQL type that ignores the GraphQL intended resolve chains uses the entire
query from Listing 6.1 within a single resolver. It therefore cannot be customized and is
limited to a single graph structure. While the structure can be used to represent all sub-
graphs that consist of a root entity and its directly related provenance components, other
graph structure cannot be represented. As a result the query is merely a workaround to
test GraphQL’s performance impact. The workaround query can be called as follows:

{

workaround(id:"ba75ac00 -09ae -49d4 -b20f -48 e4ec03e75c ") {

json

}

}

Table 6.3 shows the average request time for each query. The request time for the
GraphQL queries are determined by measuring the time between the start and the
end of the GraphQL execution directly on the server. To determine the duration of
the query execution against Dgraph directly, Dgraph’s debug information contained in
the returned results are used. The request time averages indicate that using GraphQL
the intended way has a relatively big performance impact with a factor of about 3.6
compared to the workaround query. The time difference between the request when using
the query natively against the database and the workaround query is insignificant. This
is most likely due to the fact that the workaround result is not parsed at all.

The performance impact observed is caused by GraphQL calling a resolver for every
traversed edge (indicated by nested structures in the query). This results in a total
of six executed queries for the reference query versus a single query against the graph
database when using the workaround or querying directly against Dgraph. The impact
grows more significant when the root query returns more than a single entity and is
discussed further in Section 6.6.

Query Avg. Duration in ms

GraphQL Intended 36.4082
GraphQL Workaround 10.4978

Against Database 9.8023

Table 6.3: Query performance for single entities and graph representations with dif-
ferent roots.

45

6. Evaluation

Figure 6.1: Visualization of the query result from Listing 6.1. The blue colored node is
the root entity, the green node is the entity the root entity derived from. The generating
process is colored in pink and the responsible parties in orange and magenta.

6.4 Provenance Quality.

The structural and contextual integrity are the two most important criteria when de-
termining the quality of the generated provenance. Structural integrity is assessed by
traversing the provenance graphs of a provenance component to its furthest ancestor.
An analysis of the contextual integrity is omitted. This is due to contextual errors usu-
ally being a product of misbehaving process executions. In addition, due to the design
of the use case, contextual integrity can be implied if a provenance graph is complete.

First the integrity of a provenance graph that corresponds to the splitting service
is evaluated. To do so an entity generated by a process that has been invoked by the
service is selected as the graph’s root. While the activity that represents the process
could be selected as root, the entity is chosen due to it being the most common starting
point when traversing provenance trees. An exemplary use case for such a selection is
as follows:

A dataset used by a process is found to be incorrect. To find the cause of its
incorrectness a user traverses the provenance tree to the activity that has generated the
entity. The process that correlates to the activity is assessed and a problem is found
that caused incorrect data to be generated. To determine all incorrect datasets, all
entities that have been generated by that process are traversed to. This example can be
taken even further. Additionally, to the entities generated by the process, all processes
and their resulting entities that have been invoked by the responsible service can be
determined, as well as who is responsible for creating the service.

Figure 6.2 shows the resulting provenance graph for such a use case. Note that
in order to traverse to the generated entities from an activity, the corresponding edge
“wasGeneratedBy” needs to be indexed as a reverse edge to allow bidirectional graph

46

6.4. Provenance Quality.

traversal. The resulting graph contains all provenance components that are involved
in the generation of the root entity. In addition, entities that are created by the same
process can also be found in the result. Therefore, the resulting graph can be considered
complete.

Figure 6.2: Graph containing the root entity, the activity that generated it and its
responsible parties, as well as all other entities that are generated by the same activity.
Color code: Root entity (green), activity(light blue), responsible service (pink), user
responsible for service (orange), other by the activity created entities (dark blue).

The second graph is the result of a query for an use case in which the user wants
to determine the whole ancestry chain of a feature that has been successfully imported
by the tank import scenario. The root entity is the entity that correlates to an entry in
the tank database.

Starting from the root, the query traverses the involved parties, including activities,
and the responsible agents. The result, which is visualized in Figure 6.3, shows the
complete provenance graph of a successfully imported feature. The graph was gener-
ated by using a recursive query which can be found in Appendix B. The resulting graph
contains all edges and connects the nodes correctly and thus considered complete.

The next graph is the provenance graph for a feature that has been rejected by
the tank database, corrected by the exhauster scenario and has lastly been reimported.
To generate the graph another recursive query is used, which can also be found in
the appendix. The graph, shown in Figure 6.4, is essentially the union of two sub-
graphs. The first sub-graph (blue border) is an incomplete graph of the tank-import
scenario. It is considered incomplete, because the last service of the tank scenario, the

47

6. Evaluation

Figure 6.3: Provenance graph of an imported feature. Color code: Root entity (blue),
ancestor entities (green), generating process (pink), responsible service (orange), user
responsible for the services (magenta)

import is missing. The second sub-graph (green border) is the complete graph of the
exhauster scenario. As a result, the graph contains provenance information about two
independently running, but through data flow connected, scenarios.

Even though the tank-import sub-graph is incomplete, the resulting provenance
graph is still structural complete and correct, because the graph is the exact represen-
tation of the events shared by the processes that are invoked by the services of each
scenario. This can be further proven by combining both queries. The resulting graph,
see Figure A.1, is connected graph of rejected graph and the graph of the successfully
imported feature.

Missing Provenance Information. The problem that some information is missing,
is caused by the way the simulated services handle these situations. The provenance
service is designed as a passive service. As such it is not aware of features that simply
go missing due to a process not sharing information on, for example, rejected imports.
Another situation which results in an incomplete provenance graph is the feature sani-
tization. Before rejected features can be corrected, they first need to be split into single
features again, because the exhauster provides feature collections instead of single fea-
tures. Assuming the provenance chain starts at the feature-collection, no dataset can
go missing yet, this however changes during sanitization. The automated sanitization
script assumes that, for example, a given field is in incorrectly formatted. If the field
tested by the script is correct, it can be assumed that the problem was something dif-

48

6.4. Provenance Quality.

Figure 6.4: Provenance graph of a corrected feature. Color code: Root entity (blue),
ancestor entities (green), generating process (pink), responsible service (orange)

ferent. The feature is therefore discarded and remains in the exhauster database, where
it can be corrected manually.

Possible Solutions. Currently the provenance service is unable to automatically
identify and solve the issue at hand. A possible solution is to expand provenance
messages and solve the problem on the service level. To do so, a new field success
is introduced, which indicates the outcome of the process that did or did not generate a
new provenance entity. If a process generated a new entity successfully, the provenance
message is analogue to the current model. In the other scenario, that an entity was not
generated successfully, a provenance message with both in- and output IDs would still
be sent and thus provenance could be generated. However, the new field would indicate
that the process responsible for that entity was not successful. The information on the

49

6. Evaluation

outcome could be stored within the “wasGeneratedBy” edge. The resulting provenance
graphs are always complete and contain information even on provenance entities that
would normally not be recorded. Using Figure 6.4 as an example, the missing infor-
mation would be inserted between the activities that correlate to the service “Geocode
Feature” and “Fan-Out Rejected”. While this solution generates better provenance for
those cases, it requires more overhead from the user responsible for the service creation.

Another solution is therefore to make the provenance service aware of the expected
outcome of each process. This would also require more user overhead, but instead of
changing the service’s execution or implementing the new message format, the infor-
mation on what is expected can be contained in the service description. To do so, the
service description is expanded, including in- and output cardinality. Using the san-
itization service as an example, a process invoked by that service expects one input
file and generates exactly one output file. It can be assumed that a new entity could
not be generated, if no output information is provided by the process. In that case a
placeholder entity is created by the provenance service, that makes use of the proposal
above to store this information in an edge.

While the second proposal works on all services that generate exactly one output,
even if multiple inputs are provided, it won’t work for services that have an undefined
amount of outputs. For that matter, further solutions need to be tested and evaluated.
This, however, is subject to future work.

6.5 Database Performance

The use-case evaluation in the earlier section shows that Dgraph’s query performance
is more than suitable for relatively big provenance representations. However, the write
performance is clearly a bottleneck. In this section the cause of the problem as well as
potential solutions are discussed.

Concurrency. Many databases allow concurrent read and write operations. Dgraph
does, for the most part, not. When two database transactions are executed concur-
rently, there are two cases that need to be considered. The first and best case, shown in
Listing 6.2, is that both transactions write to independent nodes using the “wasDerived-
From” edge. If that is the case, both transactions succeed and the database has been
written to concurrently.

// first mutation

{

"uid": "_:b4c09cf6 -0b22 -4de6 -b8da -19 a7c8158061",

"id": "b4c09cf6 -0b22 -4de6 -b8da -19 a7c8158061"

"creationDate ": "2020 -01 -16 02:08:56.837612 +0100 CET m

=+0.019593012" ,

"wasDerivedFrom ": [

{

"uid": "0x123",

}

]

50

6.5. Database Performance

}

// second mutation

{

"uid": "_:ea46abad -0f34 -4aac -be6e -197891 d79e3d",

"id": "ea46abad -0f34 -4aac -be6e -197891 d79e3d",

"creationDate ": "2020 -01 -16 02:08:56.837612 +0100 CET m

=+0.019593012" ,

"wasDerivedFrom ": [

{

"uid": "0x456",

}

]

}

Listing 6.2: Exemplary mutations contained in concurrent Dgraph transactions, that
would result in successful concurrent writes.

However, this cannot be guaranteed. If two or more transactions try to write to
the same node, all but one transaction are rejected. The rejected transactions can just
be executed again, however, this could lead to incomplete provenance graphs. This
is due to the way Dgraph creates edges. Within a batch, all connected blank nodes
have been assigned by the preparation steps. A rejected database transaction might
include provenance components that are now available in the database, but due to them
missing before the transaction was executed, they are still referenced by a blank node
instead of a Dgraph assigned UID. Therefore, all entities within a rejected transaction
are required to redo all preparation steps that fetch related provenance components.
Hence, concurrent write-transactions need to be avoided.

Potential Solutions. Before solutions can be discussed, the environment in which
the provenance service is deployed needs to be considered. As part of one of the system
services, the provenance service needs to guarantee that all dedicated messages sent can
be handled. However, it does not need to guarantee that a provenance graph for a sce-
nario is available the moment it concludes. Therefore, the actual database transactions
can be done asynchronously and independent of the actual message handling.

Currently the relatively slow writing speed could lead to problems. The performance
measurements show that more than 99.6% of the time is spent on the database trans-
action. This could potentially cause a considerable backlog of provenance messages,
that cannot be persisted in a timely manner. In a worst case scenario this could lead
to a dataloss. Thus, provenance messages need to be prepared and persisted as fast as
possible.

An easy solution is to use a different database that supports concurrent writes. While
this solves the write performance problem, query times become considerably longer
depending on the replacement database. A potential replacement database is Neo4j2.
Another advantage of keeping Dgraph as the storage solution is its easy scalability and
deployability in distributed environments.

2https://neo4j.com/

51

https://neo4j.com/

6. Evaluation

The second solution is to use a centralized persistent cache as an auxiliary storage,
in which prepared entities are stored and steadily transferred to the Dgraph database.
In its current implementation, the provenance services handles provenance messages
sequentially by a single routine. Provenance entities are prepared by requesting data
from the database, a system service, and the key-value cache used to store the blank
nodes, before they are added to a batch. A centralized cache allows messages to be
prepared concurrently, as they are not directly stored in the actual database at the end
of the preparation steps. Instead of a single routine that prepares provenance entities
based on the consumed messages, one goroutine can be invoked per message. The
prepared entities created by each goroutine are then stored in the centralized cache
instead of the database. To avoid concurrent writes, which might fail, a single goroutine
collects the prepared entities from the cache and commits them to the database. To do
so, the cache needs to act like a queue, the first entity that is written to the cache needs
to be the first one to be read from the cache.

The provenance service does not need to guarantee that provenance is available as
soon as a scenario is finished, but it needs to guarantee that a complete provenance
graph is generated. The solutions proposed can solve the problem, however they both
need to be thoroughly tested and evaluated.

6.6 GraphQL API

GraphQL is a great tool and depending on the use case a superior replacement to
REST APIs. Although the provenance generated can be queried using the GraphQL
API, it is not without its downsides or workarounds. GraphQL excels when the user can
define the structure of the data. This is easily achieved for retrieving single provenance
components. Retrieving graph representations, however, is a bigger problem. While the
implemented API offers this functionality, it is simply a workaround.

Essentially in its current implementation, a user has two ways to retrieve a graph
representation. The first one is simply using the workaround root query and the other is
building its own structure starting at an activity, agent or entity root query. When using
the workaround root query, a query, what is essentially a static, predefined query, is run
against the Dgraph database and its output is simply passed through the GraphQL
server to the client. This makes best use of the benefits of a graph database, but
GraphQL’s biggest selling point, its customisable query structure, is being discarded.
Although the second option to query data is the preferred way, it greatly sacrifices
performance for customisability.

Independent of the database used when resolving a nested GraphQL query, each
resolver would generate a new database request. The problem becomes even more severe
when working with lists. This is due to how resolvers get passed down in GraphQL.
When a top level resolver results in a list of objects, the lower level resolvers are not
made aware of the list. Instead a new resolver is invoked for each item in the list. This
is known as the N+1 Problem.

52

6.6. GraphQL API

N+1 Problem. The N+1 problem is a problem unique to GraphQL and is caused by
its resolver concept and can lead to poor query performance independent of the chosen
backend database. The query in Figure 6.5 returns a list with all activities and their
respective fields id and description, and the entities used and their field id, by each
activity, that have been associated with the agent with the ID agent1.

{

query{

activity(WasAssociatedWith.id="agent1") {

id

description

used {

id

}

}

}

}

Listing 6.3: Query to fetch all activities and their used entities, that are associated
with a certain agent.

In Dgraph, or any graph database for that matter, this would require a single
database round-trip. However, due to the N+1 problem, this would result in several
full round trips; one for all activities and one more for each activity, hence n+ 1 queries
(amount of activities returned by the root query plus the root query). Listing 6.4 shows
the chain of queries that would be executed if the query returned two activities with
the respective IDs activity1 and activity2. Figure 6.5 shows the corresponding pseudo
graph. It is color coded to indicate the different queries generated by GraphQL.

SELECT *

FROM activities

WHERE agent id = "agent1"

SELECT *

FROM entities

WHERE wasgeneratedby id = "activity1"

SELECT *

FROM entities

WHERE wasgeneratedby id = "activity2"

Listing 6.4: Pseudo queries to fetch all activities and their used entities that are
associated with a certain agent.

53

6. Evaluation

Used Entities Used Entities

Figure 6.5: Graph representation of Listing 6.3

Solutions. The most common approach to the N+1 problem is to use Facebook’s
DataLoader3, or community developed implementations for other languages. The basic
principle of the DataLoader is to batch and cache resolver executions. As a result, the
amount of full database run trips can be drastically reduced. While this is a big im-
provement for relational databases, graph databases still would suffer from performance
hits compared to native queries to the database, because they could usually resolve the
GraphQL query in a single database request.

Recently graph database developers started to acknowledge GraphQL’s native way
of querying data. Neo4j released a GraphQL plugin4 that seeks to allow full integration
of the GraphQL standard to applications that want to make use of both Neo4j and
GraphQL. Dgraph uses its own derivative of GraphQL, GraphQL+. While it is based
on the standard, it is not compatible and thus requires workarounds such as the one
described earlier. This has been a big talking point in the community and thus has led
to the Dgraph team starting its development on their own implementation of the full
GraphQL API server that can be integrated into the Dgraph cluster. Their efforts are
currently available in beta5.

The technologies by Dgraph and Neo4j offer a solution to the problem but are
specific to their respective database. Moreover, the Dgraph approach does not allow
developers to implement their own API, but instead forces usage of their own server.
While this should be suitable for most use cases, there are still situations where a custom
implementation is preferred. Whether the data loader pattern, or a first party solution
offered by the database developers is better in the specific use case of a provenance
service for distributed system requires more testing and cannot be answered at the

3https://github.com/graphql/dataloader
4https://neo4j.com/developer/graphql/
5https://graphql.dgraph.io/

54

https://github.com/graphql/dataloader
https://neo4j.com/developer/graphql/
https://graphql.dgraph.io/

6.7. Generating Provenance without Dedicated Messages

given time. However, a solution, in which the full benefits of a graph database can be
combined with the capabilities of a GraphQL server, is preferred.

6.7 Generating Provenance without Dedicated Messages

For the realisation of the tank-import use case dedicated provenance messages have been
used. Provenance messages are generally the preferred way to generate provenance for
a scenario. However, there may be cases in which a service and therefore its invoked
processes cannot provide dedicated provenance messages, even though the user that
created the service wishes that provenance is generated. This is, from a provenance
perspective, the most challenging situation. In this section different ways to generate
provenance without dedicated provenance messages are discussed.

Retroactive Provenance Generation. Currently the service generates provenance
by combining the information on a process, contained in dedicated provenance messages,
with information queried from system services of the orchestration system. The IDs
required for the queries are extracted from a message’s routing key. As per specification,
a message send by a process must contain the ID of the process and thus the ID can
also be used for the extraction of process information. This is possible due to the
orchestration system’s concept. The main purpose of the system is to manage and
execute scenarios. In order to execute the services, that make up the scenarios, processes
need to be invoked. Furthermore, the processes need to exchange in- and output data,
while at the same time not being aware of each other. Thus, the data exchanged must
be handled by the orchestration system and hence the orchestration system must also
be aware of process related data.

The information on processes within the system service is essentially the same in-
formation contained in provenance messages. The key difference is that the way the
information is handed to the system services by a process can vary. For instance, the
script used to split feature-collections for the tank import use case is an example for a
file based service. The script is called with input and output paths as arguments, which
therefore have to be known beforehand. Note that the output paths can be paths to
directories or files. It can be assumed that those are assigned by the orchestration ser-
vice. Therefore the input path, the output path and the exact time the process has been
invoked are known by and available to system services and the remaining information,
for example the time of completion, possible errors or execution reports, is added upon
completion.

{

"id": "2c2755df -ca17 -4a01 -a4a5 -bfd91b3e18f8",

"instanceOf ": "125 caf57 -2221 -4a11 -a66c -f01a7eba5ae1",

"startDate ": "2020 -01 -16 02:08:56.837612 +0100 CET m

=+0.019593012" ,

"endDate ": "2020 -01 -16 02:08:56.837612 +0100 CET m=+0.019593012" ,

"input": "b4c09cf6 -0b22 -4de6 -b8da -19 a7c8158061"

"output ": "ea46abad -0f34 -4aac -be6e -197891 d79e3d",

55

6. Evaluation

"status ": "complete",

}

Listing 6.5: Exemplary process information used for retroactive provenance generation.

In order to combine multiple messages to a single provenance message, the prove-
nance service would need to store the message fragments and track the execution state
of processes to ensure full message integrity. However, this can be avoided. It can be
assumed that at the time a process’ last message fragment has been consumed, all in-
formation on that process is available to the orchestration system, including file paths,
timestamps and possible state reports. Thus instead of tracking and building full mes-
sages on its own, the provenance service only needs to wait for messages that indicate
a process has been completed. After such a message is consumed, the information that
would usually be contained in provenance messages can be queried from system services
by the ID contained in the routing key.

Log-Messages. Provenance generated from provenance messages and retroactively
from system service share the assumption that all data required for a complete prove-
nance presentation of a process and its in- and outputs is made available by a process.
However, it is possible that this is not the case. For example a process invoked by a
service designed to import a batch of data into a database might not have an actual
output relevant to the scenario and because outputs are not mandatory this information
can be omitted. This would result in incomplete provenance information, because even
if detailed provenance for each object in the batch is available before the import, after
the import the entire batch would be linked to the same derivative entity, namely the
entire database.

Processes like this could still send out log messages. The log messages can be filtered
for messages that can be used for provenance using regular expressions. This however
implies that the provenance service is aware of the log message format used by a service.
Using the tank-import service as an example, a process invoked by the service could
publish out a log message, as seen in Listing 6.6, once a feature has been successfully
imported. Depending on the service definition, log messages can be handled like full
provenance messages.

{

"timestamp ": "2020 -01 -16 12:00:00" ,

"message ": "feature imported , id: 125caf57 -2221 -4a11 -a66c -

f01a7eba5ae1",

}

Listing 6.6: Log message sent by a process on successful database import.

In some cases a combination of a log-message based and a retroactive provenance
generation may be required. The listing above only contains the ID of the feature
within the tank database. Therefore, in order to generate complete provenance, process
information needs to be extracted using the retroactive method described earlier. The
extracted information then needs to be combined with the content of the log-message.
Even if the orchestration system is unaware of all objects that have been created by a

56

6.7. Generating Provenance without Dedicated Messages

process, it must be aware of the input dataset given to a process. This is implied by
the orchestration system’s design.

Mixed Message Scenarios. Provenance messages are sent by a process and thus the
type of message that is supposed to be used for provenance is defined by the invoking
service. As a result a scenario could potentially make use of dedicated provenance
messages, log messages and retroactive provenance generation within a single scenario
execution. While challenging, it is certainly possible to generate provenance in a scenario
like this. However, in order to produce meaningful provenance, the service needs to be
aware of the different provenance generation method, that needs to be used per service.
Otherwise, provenance information may be lost, which results in an incomplete graph.
This can easily be achieved by introducing two new fields to the service definition. The
first field provenanceType is used to define the method for provenance generation and
the second field provenancePattern is used to filter provenance messages if the defined
generation method is “log message”.

Providing full provenance coverage might not always be possible. However, combin-
ing dedicated provenance messages and the concepts introduced in this section should
cover most scenarios. The realisation and evaluation of the concepts is subject to future
work.

57

Chapter 7

Conclusion

This thesis focused on the concept and the implementation of a provenance service
for an orchestrated distributed workflow management system. To determine a suitable
data model, as well as the general requirements, for the service, different provenance use
cases and implementations have been investigated. The investigation has shown that
provenance is commonly used in various environments. The W3C proposed PROV-DM
is commonly a used data model for geospatial data. Moreover, the investigation shows
that a PROV based data model can easily be expanded to fit most requirements.

To determine the requirements for the provenance service the specifications of the
target system have been reviewed. Based on the requirements a general concept and ap-
plication architecture has been developed, which has been implemented as a prototypical
provenance service.

The implementation has been evaluated using a simulated scenario based on a real
world use case. While the evaluation has proven that the provenance service’s concept is
able to generate provenance for the simulated scenario, limitations of the current concept
could also be observed. The main limitation has been Dgraph’s write performance.
Even with batched mutations, the database’s write speed has been relatively slow. The
evaluation has also shown that the GraphQL query language is a potent tool when
working with provenance graphs. However, the GraphQL server itself has had a negativ
performance impact when working with a graph database. Potential solutions to both
problems have been proposed and discussed.

In addition to storage performance, the provenance graphs generated by the service
have been evaluated. The evaluation of the graphs has shown that the service is able
to create graphs independent of the executed scenarios. It also has also shown that the
quality of the provenance graphs is in a direct relation to the amount of data sent to
the provenance service. This became apparent in the provenance graphs generated by
the scenario responsible for correcting rejected features as the resulting graphs did not
contain the activity responsible for the import. This was the result of the service not
providing provenance messages for rejected features. While it is not the responsibility
of the provenance service to insert data that is assumed to be missing, potential ways
to indicate failed process executions have been proposed.

59

7. Conclusion

Finally, the prototype is only able to generate provenance by consuming dedicated
provenance messages. While this is the easiest and probably most efficient way to
generate provenance, other creation methods have been introduced.

In conclusion, it can be said that the provenance service developed in this thesis is
a suitable foundation to expand on. The limitations that have been observed do not
indicate problems with the concept, because they, for the most part, can be directly
associated with the chosen technologies. The provenance solution developed in this
thesis should be seen as the first steps to complete provenance solution and can be used
for future developments.

60

Appendix A

Provenance Representations

A.1 Dgraph Mutation

{

"uid": "_:ea46abad -0f34 -4aac -be6e -197891 d79e3d",

"id": "ea46abad -0f34 -4aac -be6e -197891 d79e3d",

"creationDate ": "2020 -01 -16 02:08:56.837612 +0100 CET m

=+0.019593012" ,

"wasDerivedFrom ": [

{

"uid": "_:b4c09cf6 -0b22 -4de6 -b8da -19 a7c8158061",

"id": "b4c09cf6 -0b22 -4de6 -b8da -19 a7c8158061"

}

],

"wasGeneratedBy ": [

{

"uid": "_:22c2b109 -31bf -419c-a26e -6 d14e03ef4c5",

"id": "22c2b109 -31bf -419c-a26e -6 d14e03ef4c5",

"startDate ": "2020 -01 -16 02:08:56.837423 +0100 CET m

=+0.019403581" ,

"endDate ": "2020 -01 -16 02:08:56.837612 +0100 CET m

=+0.019593012" ,

"wasAssociatedWith ": [

{

"uid": "_:125 caf57 -2221 -4a11 -a66c -f01a7eba5ae1",

"id": "125 caf57 -2221 -4a11 -a66c -f01a7eba5ae1",

"name": "Split Feature -Collection",

"description ": "Splits a Feature Collection into

single features",

"type": "service",

"actedOnBehalfOf ": [

{

"uid": "_:2c2755df -ca17 -4a01 -a4a5 -

bfd91b3e18f8",

"id": "2c2755df -ca17 -4a01 -a4a5 -bfd91b3e18f8",

"name": "Max Mustermann",

"type": "user"

}

61

]

}

],

"used": [

{

"uid": "_:b4c09cf6 -0b22 -4de6 -b8da -19 a7c8158061",

"id": "b4c09cf6 -0b22 -4de6 -b8da -19 a7c8158061"

}

]

}

]

}

Listing A.1: Prepared database mutation for a new entity and all in its creation
involved parties.

A.2 Combined Provenance Graph

Figure A.1: Combined graph of the complete processing trees of a rejected feature
(green border) and a successfully imported feature (blue border). The sub-graphs can
be found in the Figures 6.3 and 6.4. The color coding is as follows: rejected root (green),
imported root (blue), ancestor entities (pink), involved activites (blue), responsible ser-
vices (magenta), origin entity (grey).

63

B. Dgraph

Appendix B

Dgraph

B.1 Queries

{

rejected(func: eq(id, "93dc9f1e -f656 -4796 -acb1 -9 a9ca39e6b4b "))

@recurse(depth: 10, loop:true) {

id

creationDate

startDate

endDate

name

wasDerivedFrom

wasGeneratedBy

used

wasAssociatedWith

}

}

Listing B.1: Recursive query to generate full provenance graph of a rejected entity.

{

imported(func: eq(id, "cb0b735b -db57 -4ef6 -b76f -37 b471c1988d "))

@recurse(depth: 10, loop:true) {

id

creationDate

startDate

endDate

name

wasDerivedFrom

wasGeneratedBy

used

wasAssociatedWith

}

}

Listing B.2: Recursive query to generate full provenance graph of a successfully
imported entity.

64

{

query(func: eq(id , "05e46b01 -7b16 -4c9d -b567 -b1791bf82814 ")) {

id

creationDate

wasDerivedFrom {

id

}

wasGeneratedBy {

id

startDate

endDate

used {

id

creationDate

}

wasAssociatedWith {

id

name

actedOnBehalfOf {

id

name

}

}

}

}

}

Listing B.3: Query to generate a provenance graph of an entity and all parties that
were involved in its creation.

B.2 Schema

<actedOnBehalfOf >: uid @reverse .

<creationDate >: string .

<description >: string .

<endDate >: string .

<id >: string @index(exact) @upsert .

<name >: string .

<startDate >: string .

<type >: string .

<uri >: string .

<used >: uid @reverse .

<wasAssociatedWith >: uid @reverse .

<wasDerivedFrom >: uid @reverse .

<wasGeneratedBy >: uid @reverse .

Listing B.4: Dgraph database schema.

65

C. Tank Import Use-Case Results

Appendix C

Tank Import Use-Case Results

{

"type ":" FeatureCollection",

"features ":

[

{

"type ":" Feature",

"geometry ":{

"type ":" Polygon",

"coordinates ":[

[

[-155.773005 ,19.108122] ,

[-155.772896 ,19.108141] ,

[-155.772916 ,19.108241] ,

[-155.773025 ,19.108222] ,

[-155.773005 ,19.108122]

]

]

},

"properties ":{}

}

]

}

Listing C.1: Input feature-collection.

{

"type ":" Feature",

"geometry ":{

"type":

"Polygon",

"coordinates ":[

[

[-155.773005 ,19.108122] ,

[-155.772896 ,19.108141] ,

[-155.772916 ,19.108241] ,

[-155.773025 ,19.108222] ,

[-155.773005 ,19.108122]

]

66

]

},

"properties ":{}

}

Listing C.2: Split feature returned by the splitting service.

{

"type ":" Feature",

"geometry ":{

"type":

"Polygon",

"coordinates ":[

[

[-155.773005 ,19.108122] ,

[-155.772896 ,19.108141] ,

[-155.772916 ,19.108241] ,

[-155.773025 ,19.108222] ,

[-155.773005 ,19.108122]

]

]

},

"properties ":{

"id ":45621189 ,

"postcode ":"96737" ,

"county ":" Hawaii County",

"road ":" Aloha Boulevard",

"area ":132.08039884712187 ,

"lat ":19.1081815 ,

"lon ": -155.7729605

}

}

Listing C.3: Geocoded feature generated by the geocoding service.

{"msg": "feature imported", "id": "2ef9a0ac -651c-4330 -80dc-da44683c194d "}

Listing C.4: Response by the tank upon a successful import.

Fan out to Exhauster - {" status ": "accepted", "id": "5

e215086060b8f5e95ff5628 "}

Listing C.5: Log message produced by the tank upon feature rejection.

67

D. Docker

Appendix D

Docker

D.1 Dockerfile

FROM golang:alpine AS build

RUN apk update && apk add --no -cache git ca -certificates

WORKDIR /tracer

COPY ./go.mod ./go.sum ./

RUN GOPROXY=https :// proxy.golang.org go mod download

COPY ./ ./

RUN CGO_ENABLED =0 GOOS=linux GOARCH=amd64 \

go build -ldflags="-w -s" \

-installsuffix "static" \

-o /go/bin/tracer /tracer/cmd/tracer

FROM alpine:latest

ENV DEPLOYMENT_ENVIRONMENT "PROD"

ENV DATABASE_URL ""

ENV BROKER_URL ""

ENV BROKER_USER ""

ENV BROKER_PASSWORD ""

ENV BATCH_SIZE_LIMIT ""

ENV BATCH_TIMEOUT ""

COPY --from=build /go/bin/tracer /go/bin/tracer

CMD "/go/bin/tracer"

D.2 Docker-Compose

version: "3.2"

services:

zero:

68

D.2. Docker-Compose

image: dgraph/dgraph:v1 .0.18

volumes:

- /tmp/data:/ dgraph

ports:

- 5080:5080

- 6080:6080

restart: on -failure

command: dgraph zero --my=zero :5080

alpha:

image: dgraph/dgraph:v1 .0.18

volumes:

- /tmp/data:/ dgraph

ports:

- 8080:8080

- 9080:9080

restart: on -failure

command: dgraph alpha --my=alpha :7080 --lru_mb =2048 --zero=zero :5080

ratel:

image: dgraph/dgraph:v1 .0.18

ports:

- 8000:8000

command: dgraph -ratel

rabbitmq:

image: "rabbitmq:3- management"

ports:

- "5672:5672"

- "15672:15672"

volumes:

- "rabbitmq_data :/data"

volumes:

rabbitmq_data:

69

Acronyms

AMQP Advanced Message Queuing Protocol
API Application Programming Interface
CRUD Create, read, update and delete
HTTP Hyper Text Transfer Protocol
IoT Internet of Things
LDAP Lightweight Directory Access Protocol
M2M Machine to Machine
OPM Open Provenance Model
RDF Resource Description Framework
REST Representational State Transfer
SPADE Support for Provenance Auditing in Distributed Environments
W3C Word Wide Web Consortium

71

Bibliography

[1] ISO/IEC 19464:2014 information technology — Advanced Message Queuing Protocol (AMQP)
v1.0 specification. Technical report, May 2014. (page 7)

[2] AMQP Working Group 0-9-1. AMQP advanced message queuing protocol; version 0-9-1. Technical
report, November 2008. (page 8)

[3] S. Batra and C. Tyagi. Comparative analysis of relational and graph databases. International
Journal of Soft Computing and Engineering (IJSCE), 2(2):509–512, may 2012. (page 11)

[4] M. Bryant. Graphql for archival metadata: An overview of the ehri graphql api. In 2017 IEEE
International Conference on Big Data (Big Data), pages 2225–2230, Dec 2017. doi:10.1109/

BigData.2017.8258173. (page 18)

[5] H. Butler, M. Daly, A. Doyle, S. Gillies, S. Hagen, and T. Schaub. The GeoJSON Format. RFC
7946, RFC Editor, August 2016. URL: https://tools.ietf.org/rfc/rfc7946.txt. (page 2)

[6] Y. Cheah and B. Plale. Provenance analysis: Towards quality provenance. In 2012 IEEE 8th In-
ternational Conference on E-Science, pages 1–8, Oct 2012. doi:10.1109/eScience.2012.6404480.
(page 18)

[7] G. Closa, J. Masó, B. Proß, and X. Pons. W3c prov to describe provenance at the dataset,
feature and attribute levels in a distributed environment. Computers, Environment and Urban
Systems, 64:103 – 117, July 2017. URL: http://www.sciencedirect.com/science/article/pii/
S0198971517300558, doi:https://doi.org/10.1016/j.compenvurbsys.2017.01.008. (pages 16
and 17)

[8] L. Di, P. Yue, H. K. Ramapriyan, and R. L. King. Geoscience data provenance: An overview.
IEEE Transactions on Geoscience and Remote Sensing, 51(11):5065–5072, Nov 2013. doi:10.

1109/TGRS.2013.2242478. (page 17)

[9] Facebook. Graphql specification. Technical report, June 2018. URL: https://graphql.github.
io/graphql-spec/June2018/. (page 9)

[10] D. Garijo, Y. Gil, and A. Harth. Challenges in modeling geospatial provenance. In Proceedings of
the fifth international provenance and annotation Workshop (IPAW), Cologne, Germany, June 9,
volume 13, page 2014, June 2014. (pages 16 and 17)

[11] A. Gehani and D. Tariq. Spade: support for provenance auditing in distributed environments. In
Proceedings of the 13th International Middleware Conference, pages 101–120. Springer-Verlag New
York, Inc., 2012. (pages 15 and 16)

[12] T. Malik, L. Nistor, and A. Gehani. Tracking and sketching distributed data provenance. In
2010 IEEE Sixth International Conference on e-Science, pages 190–197, Dec 2010. doi:10.1109/

eScience.2010.51. (page 15)

[13] L. Moreau et al. The open provenance model core specification (v1.1). Future Generation Computer
Systems, 27(6):743–756, June 2011. URL: https://eprints.soton.ac.uk/271449/. (page 6)

73

https://doi.org/10.1109/BigData.2017.8258173
https://doi.org/10.1109/BigData.2017.8258173
https://tools.ietf.org/rfc/rfc7946.txt
https://doi.org/10.1109/eScience.2012.6404480
http://www.sciencedirect.com/science/article/pii/S0198971517300558
http://www.sciencedirect.com/science/article/pii/S0198971517300558
https://doi.org/https://doi.org/10.1016/j.compenvurbsys.2017.01.008
https://doi.org/10.1109/TGRS.2013.2242478
https://doi.org/10.1109/TGRS.2013.2242478
https://graphql.github.io/graphql-spec/June2018/
https://graphql.github.io/graphql-spec/June2018/
https://doi.org/10.1109/eScience.2010.51
https://doi.org/10.1109/eScience.2010.51
https://eprints.soton.ac.uk/271449/

Bibliography

[14] L. Moreau and P. Missier. PROV-DM: The PROV Data Model. W3C recommendation, W3C,
April 2013. URL: http://www.w3.org/TR/2013/REC-prov-dm-20130430/. (pages 1 and 7)

[15] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. I.Seltzer. Provenance-aware storage
systems. In USENIX Annual Technical Conference, General Track, pages 43–56, 2006. (page 16)

[16] N. Naik. Choice of effective messaging protocols for iot systems: Mqtt, coap, amqp and http.
In 2017 IEEE International Systems Engineering Symposium (ISSE), pages 1–7, Oct 2017. doi:

10.1109/SysEng.2017.8088251. (page 8)

[17] F. Nogatz and D. Seipel. Implementing graphql as a query language for deductive databases in
swi-prolog using dcgs, quasi quotations, and dicts. Electronic Proceedings in Theoretical Computer
Science, 234:42–56, Jan 2017. URL: http://dx.doi.org/10.4204/EPTCS.234.4, doi:10.4204/

eptcs.234.4. (page 9)

[18] S. S. Sahoo, A. Sheth, and C. Henson. Semantic provenance for escience: Managing the deluge
of scientific data. IEEE Internet Computing, 12(4):46–54, July 2008. doi:10.1109/MIC.2008.86.
(page 16)

[19] M. van Steen and A. S. Tanenbaum. Distributed Systems. Maarten van Steen, third edition,
December 2018. (page 5)

[20] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins. A comparison of a graph
database and a relational database: A data provenance perspective. In Proceedings of the 48th
Annual Southeast Regional Conference, ACM SE ’10, New York, NY, USA, april 2010. Association
for Computing Machinery. doi:10.1145/1900008.1900067. (page 17)

[21] P. Yue and Lianlian He. Geospatial data provenance in cyberinfrastructure. In 2009 17th Interna-
tional Conference on Geoinformatics, pages 1–4, Aug 2009. doi:10.1109/GEOINFORMATICS.2009.

5293509. (page 17)

[22] D. Zhao, C. Shou, T. Maliky, and I. Raicu. Distributed data provenance for large-scale data-
intensive computing. In 2013 IEEE International Conference on Cluster Computing (CLUSTER),
pages 1–8, Sep. 2013. doi:10.1109/CLUSTER.2013.6702685. (page 16)

74

http://www.w3.org/TR/2013/REC-prov-dm-20130430/
https://doi.org/10.1109/SysEng.2017.8088251
https://doi.org/10.1109/SysEng.2017.8088251
http://dx.doi.org/10.4204/EPTCS.234.4
https://doi.org/10.4204/eptcs.234.4
https://doi.org/10.4204/eptcs.234.4
https://doi.org/10.1109/MIC.2008.86
https://doi.org/10.1145/1900008.1900067
https://doi.org/10.1109/GEOINFORMATICS.2009.5293509
https://doi.org/10.1109/GEOINFORMATICS.2009.5293509
https://doi.org/10.1109/CLUSTER.2013.6702685

	Acknowledgements
	Introduction
	Motivation
	Research Objective
	Methodology
	Structure

	Fundamentals
	Distributed Architectures and Orchestration
	Provenance
	Advanced Message Queuing Protocol and RabbitMQ
	GraphQL
	Dgraph

	Related Work
	Provenance in Distributed Environments.
	Provenance-Aware Storage.
	Semantic Provenance.
	Geospatial Provenance.
	Retrieval and Storage of Provenance.
	Provenance Quality.
	Apache NiFi.

	Concept
	Application Design
	Communication within the Application
	Provenance Service Architecture

	Implementation
	Technologies
	Initialization
	Communication
	Provenance Generation
	Provenance Storage
	GraphQL Integration.
	Use Case Scenario Realization
	Deployment

	Evaluation
	Use Case
	Provenance Generation.
	Provenance Retrieval.
	Provenance Quality.
	Database Performance
	GraphQL API
	Generating Provenance without Dedicated Messages

	Conclusion
	Provenance Representations
	Dgraph Mutation
	Combined Provenance Graph

	Dgraph
	Queries
	Schema

	Tank Import Use-Case Results
	Docker
	Dockerfile
	Docker-Compose

	Acronyms
	Bibliography

