
Master Thesis
Building a Low-Code Platform for versatile Data Integration

Submitted in Partial Fulfillment of the Requirements for the Degree

Master of Science

to the Department of MNI
Technische Hochschule Mittelhessen

(University of Applied Science)

by

Timon Pellekoorne

August 12, 2024

First examiner: Prof. Dr. Frank Kammer

Second examiner: Prof. Dr. Harald Ritz

Declaration of Independence

I hereby declare that I have composed the present work independently and have not
used any sources or aids other than those cited, and that all quotations have been clearly
indicated. The thesis has not been submitted to any other examination authority in the
same or a similar form and has not been published. In addition, I agree that my thesis
will be subjected to the THM internal plagiarism check.

Gießen, on August 12, 2024 Timon Pellekoorne

With the increasing amount of data and the growing number of software products in use,
companies are faced with the major challenge of processing and merging the versatile
data from the various systems. In view of the high costs of data warehouse solutions,
especially in the case of complex challenges in companies, this thesis proposes a concept
for a data integration platform that enables companies to merge and prepare data from
current and possible future systems in a simple, time-saving and cost-effective manner.
It is based on a mixture of microservices architecture and event-driven architecture,
with services consisting partly of open source software solutions and partly of software
solutions developed by the company itself. The concept was developed as part of the
work at a local energy supplier, with the goal of creating a cross-domain platform for data
integration. Parts of the implementation of the concept are also described in this thesis.
The final evaluation shows that the concept developed meets the challenging requirements
of the company, while also highlighting limitations that should be investigated in future
work.

Mit der zunehmenden Datenmenge und der wachsenden Anzahl an eingesetzten Soft-
wareprodukten stehen Unternehmen vor der großen Herausforderung, die vielfältigen
Daten aus den unterschiedlichen Systemen aufzubereiten und zusammenzuführen. An-
gesichts der hohen Kosten von Data-Warehouse-Lösungen, insbesondere bei komplexen
Herausforderungen in Unternehmen, wird in dieser Arbeit ein Konzept für eine Datenin-
tegrationsplattform vorgeschlagen, die es Unternehmen ermöglicht, Daten aus aktuellen,
aber auch aus möglichen zukünftigen Systemen einfach, zeitsparend und kostengünstig
zusammenzuführen und aufzubereiten. Dabei wird auf eine Mischung aus Microservices-
Architektur und ereignisgesteuerter Architektur gesetzt, deren Services zum Teil aus
Open-Source-Softwarelösungen und zum Teil aus eigenentwickelten Softwarelösungen
bestehen. Das Konzept wurde im Rahmen der Arbeit bei einem lokalen Energieversorger
entwickelt, wobei das Ziel einer domänenübergreifenden Plattform zur Datenintegration
verfolgt wurde. Teile der Umsetzung des Konzepts werden ebenfalls in dieser Arbeit
beschrieben. Die abschließende Evaluierung zeigt, dass das entwickelte Konzept den
anspruchsvollen Anforderungen des Unternehmens gerecht wird, wobei auch Grenzen
aufgezeigt werden, die in zukünfitigen Arbeiten untersucht werden sollten.

Contents

List of Figures iii

List of Tables v

Listings vii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Approach . 2
1.4 Limitation . 3

2 Fundamentals 5
2.1 Data Warehouse . 5
2.2 ETL Process . 6

2.2.1 Extraction . 6
2.2.2 Transform . 7
2.2.3 Load . 8
2.2.4 ETL-Tools . 8

2.3 Open Source Software . 8
2.4 Application Programming Interfaces . 9
2.5 Container . 9
2.6 Low-Code Platform . 10
2.7 SQL . 11

3 Related Work 13

4 Requirements 17
4.1 User Requirements . 18
4.2 System Requirements . 19
4.3 Business Requirements . 20

5 Concept 21
5.1 Architecture . 21

i

Contents

5.2 Services . 23
5.2.1 Data Integration . 24
5.2.2 Core Database . 28
5.2.3 Plausibility . 30
5.2.4 Semantic Layer . 33
5.2.5 Model Synchronizer . 35
5.2.6 API-Layer . 36

5.3 Graphical User Interface . 38
5.3.1 Data integration . 38
5.3.2 Data modeling . 41
5.3.3 Plausibility check . 46

5.4 Summary . 48

6 Implementation 49
6.1 Prerequisites . 49
6.2 Data Integration . 49

6.2.1 Software Selection . 50
6.2.2 Airbyte . 50
6.2.3 Integration . 52

6.3 Core Database . 52
6.3.1 Software Selection . 52

6.4 Semantic Layer . 54
6.4.1 Software Selection . 54
6.4.2 Dynamic Modeling . 54

6.5 Model Synchronizer . 60
6.5.1 Database Changes . 60
6.5.2 Realization . 61

6.6 Graphical User Interface . 61
6.6.1 Data Integration . 62
6.6.2 Data Modeling . 65

7 Evaluation 69
7.1 Develop Scenarios . 69
7.2 Perform Scenario Evaluations . 71
7.3 Reveal Scenario Interactions . 71
7.4 Overall Evaluation . 72

8 Conclusion 75
8.1 Discussion . 75
8.2 Limitations and Future Research . 76

Bibliography 77

ii

List of Figures

2.1 Basic Architecture of a Data Warehouse [Sch16] 6
2.2 Container Structure . 10

5.1 Event-Driven Architecture . 22
5.2 Overview of the Concept and its Microservices 24
5.3 Data Integration Approaches [Mas24] . 26
5.4 Design of the ETL-Service . 26
5.5 Temporal Tables in SQL Server 2016 [McD24] 29
5.6 Design of the Core Database . 29
5.7 Basic CI/CD Architecture [Las23, Git24c] 31
5.8 Design of the Plausibility Service . 32
5.9 Design of the Semantic Layer . 35
5.10 Design of the Model Synchronizer . 36
5.11 Design of the API Gateway . 37
5.12 Wireframe of the Source System Type Selection 39
5.13 Wireframe of the Connection Configuration Step 39
5.14 Wireframe of the Connection Testing Step 40
5.15 Wireframe of the Data Selection Step 40
5.16 Wireframe of the Transformation Step 41
5.17 Four Types of Joins . 42
5.18 Wireframe for Joining Imported Tables 43
5.19 Wireframe for Adding new Measures . 44
5.20 Wireframe for the Formula Editor . 45
5.21 Wireframe for Creating new Data Views 45
5.22 Wireframe for Choosing the Runner . 46
5.23 Wireframe for Setting Runner Configuration 47
5.24 Wireframe for Choosing Data . 47
5.25 Wireframe for Setting Destination Data Model 48

6.1 Architecture Overview of Airbyte [Air24a] 51
6.2 Database Schema for Storing Dynamic Data Models 59

iii

List of Tables

4.1 Excerpt from the Functional Requirements of the Specifications Sheet . 17

5.1 Architecture Characteristics Rating [Ric20] 21

6.1 Overview of React Flowchart Libraries (Accessed: 04-08-2024) 65

7.1 Scenario Evaluations . 71
7.2 Scenario Interactions per Component . 71

v

Listings

2.1 Example of a Uniform Resource Identifier 9
2.2 SQL SELECT Statement . 11

5.1 Simple SQL Join Statement . 42
5.2 Measures in SQL . 44
5.3 Creating a View in SQL . 45

6.1 Creating a Cube . 55
6.2 Adding Columns . 55
6.3 Adding Measures . 56
6.4 Adding Joins . 56
6.5 Adding Cubes to View . 57
6.6 Adding Dimensions to View . 57
6.7 Load Data for Dynamic Cube Creation 58
6.8 Render YAML File via Jinja Template Engine 58
6.9 Implement Schema Version for Cube . 59
6.10 Consuming Messages from the Postgres Channel 61
6.11 Execution of the Data Model Transformation 61
6.12 Example of Rendering an Input Field 63
6.13 Example for the Use of Generic Types 63
6.14 Interface for Creating New Sources . 64
6.15 Creating a Custom Node . 66
6.16 Add Connectors to Custom Node . 66
6.17 Create Node Objects of Cubes . 67
6.18 Create New Join via Flow Chart . 67

.

vii

1 Introduction

1.1 Motivation

The technological progress of recent years is leading to an ever-increasing global volume
of data [Hel09]. In 2021, a statistic published by the International Data Corporation
(IDC) estimated the volume of data created, captured, copied, and consumed worldwide
for the year 2025 at 181 zettabytes [Idc21]. This is 15 times the volume in 2015. Due to
this constantly growing volume of data and the associated dependency on this data, the
availability and analysis of data is becoming increasingly important [Pau21]. In addition
to the increasing amount of data, the number of software applications in companies is
also growing. In 2022, companies worldwide use an average of 130 software applications
provided by various service providers in the cloud, compared to an average of eight in
2015 [Bet22]. This development presents companies with the challenge of combining
data from a large number of applications for optimal analysis. As a result, the demand
for business intelligence (BI) products for collecting and processing data is also growing
[Hel09], as data integration is an important factor in data analysis [Hlu21].

Even companies in the energy sector are confronted with the challenges of this trend,
especially in times of constantly growing energy costs [Des24]. With the rise of new
technologies such as remotely transmitted meters, temperature meters, CO2 meters
and many more, new software applications are also being used in these companies.
The analysis of the data generated in the various systems can be used to increase
energy efficiency and thus offer long-term economic benefits by lowering the costs
of fuel imports/supply, energy production and reducing emissions from the energy
sector [HM20]. This can also offer customers advantages that make a company more
competitive. Due to the high demand for BI products, there are numerous solutions
for integrating and analyzing heterogeneous data, but these so-called Data Warehouses
are very cost-intensive, especially when it comes to the challenging requirements of
a company, where additional development costs are required by the provider. Such
specific requirements arise mainly in the area of data cleansing, plausibility checks and
modeling of the various data and cannot be covered by the standard functions that the
manufacturers supply in these areas.

1

1 Introduction

In order to counteract these disadvantages of conventional data warehouse systems and
to overcome the challenges described, this thesis designs and implements a system that
enables companies to combine data from a wide variety of systems via a graphical user
interface, to cleanse and plausibilize it and finally to model it.

1.2 Objectives

Although the thesis was created in the environment of an energy supply company, such
a system can also be used in other areas. In the medical field, for example, there is
also a need to combine data from various hospital information systems such as MR,
PACS, LIS and so on in one system [Lyu15]. Also, the implementation of development
concepts of smart cities require data integration platforms for storing and analyzing
the emerging data [Har19] and even in such special fields as mass spectrometry, one of
the major challenge is how to handle, integrate, and model the data that is produced
[Pas14].

The objective of this thesis is therefore to design a system that offers companies a
cost-effective alternative to proprietary software solutions and at the same time meets
the challenging requirements of different companies. The system should offer a good
compromise between a complete, self-developed individual solution, which implies a
high development effort, and a standard software that cannot fulfill all challenging
requirements. The key component should be an easy-to-use user interface that allows
the entire process, from the definition of external source systems to data cleansing and
modeling, to be managed by one user via this interface. These objectives give rise to
the research question on which this thesis is based:

How to build an individual easy-to-use platform for versatile data-
integration for a company with challenging requirements?

1.3 Approach

The basic architecture of the system is that of a conventional data warehouse. In order
to offer a cost-effective alternative that does not have the disadvantages of self-developed
individual software and that there are already existing free software solutions in the area
of data integration that cover most of the required functions, the basic approach of the
system is to combine existing open source software components with the development of
a customized application. This approach combines the advantages of standard software
through the open source products and the advantages of individual software through
the extension of these and the development of an own application for the individual

2

1.4 Limitation

configuration and administration of the data according to the requirements of the
company.

To ensure that a concept can be developed and implemented according to this approach,
a detailed overview of related work is first provided (Chapter 3). Based on the knowledge
gained from this and the specific requirements of the energy supplier, requirements
are then derived that the concept to be created must fulfill (Chapter 4). Based on
these requirements, the concept of the system is then presented (Chapter 5), the
implementation of which is described in part in Chapter 6. To ensure that the system
meets the requirements, it is evaluated on the basis of specific scenarios (Chapter 7).
Finally, Chapter 8 discusses the developed concept as well as the limitations and future
research.

1.4 Limitation

In order for companies to derive the described benefits from the integration of data,
an analysis platform is required via which users can analyze the merged and processed
data. Such a platform must give the user the option of displaying and filtering data
using a wide variety of visualizations. The design of such a platform is not part of this
thesis. However, there are some analysis platforms such as Superset, KNIME etc. that
can be used as an analysis platform for the system developed in the thesis. Stephan
[Ste24] describes a concept and implementation of an analysis platform based on open
source software in his thesis, which was used as the analysis platform for the system
described in the thesis.

3

2 Fundamentals

2.1 Data Warehouse

The term Data Warehouse first appeared in the 1990s. This term was coined by
Inmon, who defined a data warehouse in his book as a subject-oriented, integrated,
non-volatile, and time variant collection of data in support of management decisions
[Inm96]. According to these described properties, a data warehouse is [Bau13]:

1. A system that was not only created to fulfill a specific task, but can evaluate
entire subject areas across domains (subject-oriented).

2. A system consisting of a database made up of integrated data from different data
sources (integrated).

3. A system that is based on a stable database whose integrated data is not changed
or removed (non-volatile).

4. A system in which the data is stored over a long period of time in order to enable
time-related analyses (time variant).

Data warehouses are therefore used in companies in which a large number of systems are
used in the individual departments and specialist areas that must not be affected by data
analysis or processing. This is where the redundant data storage of data warehouses
becomes useful. In contrast to conventional information systems, a special feature of
data warehouses is that the data is no longer modified or removed after integration.
Only new data is added to the system without overwriting old data. [Kö14, Bau13]

The architecture of a data warehouse can be traced back to a basic architecture (see
Figure 2.1) consisting of the staging area, cleansing area, core and marts layers. [Sch16]

Staging Area. The data received from external sources is stored unchanged in the
staging area. The structure of the data in the staging area therefore always corresponds
to that of the source system.

5

2 Fundamentals

Cleansing Area. The cleansing area is there to clean up incorrect data from the
staging areas and to transform the data from external sources into a standardized form.

Core. The core is the central point in which the data from the staging and cleansing
area is merged.

Marts. Data marts form specific views of the data in the core, i.e. they are a subset of
the data. These views can reduce the complexity of data queries.

Data Warehouse

MartsStaging
Area

Source systems

Cleansing
Area Core

BI-platform

Figure 2.1: Basic Architecture of a Data Warehouse [Sch16]

2.2 ETL Process

The process of loading data from external sources at certain intervals (periodically or
manually by a user) into the staging area, then transforming this data into a standardized
format and storing it permanently in the target database for later analysis is described
as an ETL process, where ETL stands for extract, transform and load. [Kö14] While the
staging, cleansing area and the core are located in the data warehouse, the extraction
of the data usually takes place outside the data warehouse. [Sch16]

2.2.1 Extraction

During extraction, the data is taken from the various source systems. There are various
approaches for selecting the extraction period. [Bau13]

Periodically. The data is read out at regular intervals. The interval length can be
selected according to the requirements of the source systems.

Event-driven. The data is read out when a specific event happens. This can be a
certain number of changes or even exceeding a certain value.

Request-driven. The data is read out as required, for example by a user for new
analysis.

6

2.2 ETL Process

Immediately. If data needs to be up-to-date, it can be imported immediately so that
the data in the data warehouse is as up-to-date as in the external source systems.

In addition to the choice of extraction period, the choice of extraction mechanism is
also important in this phase of the ETL process. A distinction is made between the two
mechanisms of full extraction and delta extraction. [Sch16]

Full Extraction. All data is extracted from the external source systems.

Delta Extraction. Only a subset of the data is extracted from the external source
systems. The subset is limited to a specific time period, e.g. the period between the
last extraction and the current one.

2.2.2 Transform

Transforming the data is the most complex part of the ETL process and includes the
tasks of integration, data cleansing, versioning and aggregation. [Sch16]

Integration involves converting the data from the source systems into a standardized
form. A distinction can be made between three different transformations. [Ros13]

Syntactic transformations. The syntactic transformation refers to a stan-
dardization of the extracted data with regard to data types, data formats, etc.

Structural transformations. The structural transformation refers to different
structures of the data and their modeling.

Semantic transformations. Semantic transformations involve the standard-
ization of designations, scales used or similar.

The data cleansing process is responsible for ensuring data quality by detecting and
correcting unwanted, inconsistent and incorrect data. [Alo17] The correction of incorrect
data can only be automated in a few cases, e.g. when correcting character strings such as
an address by means of a similarity-based comparison with an address register. In other
cases, the system can either randomly compare values with values from the real world
and replace them in the event of a discrepancy or use ‘empirical values’ from a database
to provide an indication of possible incorrect data. [Bau13] The consistency check can
be rule-based, e.g. by using regular expressions. However, this requires domain-specific
knowledge. [Bau13] In addition, irrelevant records and duplicates can be filtered out, or
default values can be inserted to increase completeness. [Sch16]

If data records are changed, versioning ensures that a new version is created for the
new data records and the previous version is marked as completed [Sch16].

7

2 Fundamentals

Aggregation involves summarizing the data from the core at a higher level in order
to make this data usable for specific analyses in the data marts. When summarizing,
additive key figures are added up, whereas a suitable aggregation function must be
defined for non-additive key figures, such as the average for percentage values. [Sch16]

2.2.3 Load

Once the data has been extracted from the source systems and then transformed, it
can be loaded into the target system. Since a large amount of data has to be loaded —
especially when initially loading a data source — bulk loaders are used, which utilize a
method that can enter a large amount of data into a database system. [Ros13, Bau13]

2.2.4 ETL-Tools

For the development of ETL processes, so-called ETL tools are often used. These
combine all the required steps of the ETL process in a separate system [Ros13] and
therefore allow it to be implemented quickly and easily via a graphical interface [Sch16].
ETL tools offer so-called connectors for extracting data from a source system and loading
it into a target system. A connector is responsible for the software of a specific source
or target system. For example, most ETL tools offer a MySQL connector for connecting
MySQL databases. ETL tools represent a separate system and are not directly integrated
into the data warehouse, which allows the tools to operate independently of the source
and target systems, reducing the load on these systems. Such ETL tools are also
available as open source software and are therefore freely available.

2.3 Open Source Software

The main characteristic of open source software is that the source code is freely available
[BSI24]. But not only that, there are ten points from the Open Source Initiative that
define whether software is open source. They require, in addition to public source code,
that the software be freely redistributable, freely modifiable, and licensed under an open
source license. [Ope24] This means that open source software can be used and developed
as an entire application, as part of an application, or as the basis for an application.
For example, open source software can be used as the server of an application that is
then called via an API by a custom-developed client.

8

2.4 Application Programming Interfaces

2.4 Application Programming Interfaces

Application programming interfaces (API) are documented interfaces that enable an
application to use the services and functions of other applications, operating systems or
other software programs. Using these APIs, software developers can create applications
by using the APIs of different software libraries and combining them into one application.
[JRC19] The most commonly used architectural style for implementing APIs is the REST
architectural style [Pos23]. REST was developed by Fielding [Fie00] in 2000 as part
of his dissertation and stands for Representational State Transfer. This architectural
style defines the six design rules with the REST constraints, whereby it must be a
client-server architecture that is stateless and cacheable, has a uniform interface, uses a
layered system and sends program code on demand [Sub19]. The core of REST consists
of uniquely identifiable resources that can be queried, created, edited or deleted using
the HTTP methods GET, POST, PUT and DELETE. A resource is something that
can be described uniquely, such as a customer or a file. These resources are uniquely
identified via Uniform Resource Identifier (URI), which consists of a schema, which is
in REST HTTP or HTTPS, an authority, a path and optionally also query parameters
[Wir19]. The query of a customer with ID 1 with the authority company.com is shown
as an example in Listing 2.1.

Listing 2.1: Example of a Uniform Resource Identifier

http://company.com/customers/1

2.5 Container

Containers are a form of virtualization at operating system level in which the resources
of a single operating system are divided into isolated groups, so-called containers. The
technology appeared in 1979 with the introduction of the chroot command in UNIX
operating systems. This command was intended to enable the isolation of file system
resources for each process, which is the basis of OS-level virtualization. Building on
this command, more and more technologies came onto the market until the best-known
software, Docker, finally appeared in 2013. Docker is not just a container runtime to
execute containers, but an entire ecosystem for containers with tools and standards for
creating and managing containers. Even though Docker is currently still the leading
container technology [Dat23], more and more providers have appeared over time. For
this reason, Google, Docker, IBM, Microsoft and others founded the Open Container
Initiative (OCI) in 2015, which published the open container standard in 2016. This
includes the Container running standard and the Container image standard. [Hua23]

9

2 Fundamentals

Hardware

Host Operating System

Container Engine

Libs

App

Libs

App

Libs

App

Figure 2.2: Container Structure

A container consists of the application with all its required dependencies and can
therefore be executed in isolation from other processes in the user space of the host
operating system. As can be seen in Figure 2.2, all containers use the same host
operating system. This offers the advantage that containers are therefore smaller as
they do not require their own operating system, they are available more quickly and are
cheaper and easier to migrate. [Hua23]

The basis of every container is the container image. This provides the basis of the
container by means of a read-only file system, which cannot be changed. For the
management of files in a container, it also has an overlay file system, which is mapped
on the host system within the Docker directory. This separation of the file systems
makes it possible to derive any number of containers from the container images. [Kof21]
Because a container is isolated, it can be run on virtual machines, physical servers or in
the cloud without any adaptations to the host operating system. [Hua23]

2.6 Low-Code Platform

The tendency of developers to switch from low-level languages to high-level languages
during development has existed since programming languages have existed [Pin23]. The
first concepts for developing applications without extensive programming knowledge
therefore emerged as early as the 1980s [Mar82]. However, the term ‘low-code’ was first
mentioned in 2014 by a market research company [Boc21].

A low-code platform (LCP) – often also called low-code application platform (LCAP) or
low-code development platform (LCDP) – is a software development tool that enables
users with little practical knowledge to efficiently create applications with complex
business logic. They aim to close the gap between experienced software developers
and people with little or no experience in software engineering. To achieve this goal,

10

2.7 SQL

low-code platforms offer the possibility to design the functionality of the application via
graphical user interfaces, using mechanisms such as drag and drop. [Sá24] LCPs are
particularly strong in the areas of database applications, mobile applications, process
applications and request-handling applications [Ihi20]. Especially in the area of database
applications, low-code platforms can help users to make queries to a database and model
and edit data without having to learn more complex query languages such as SQL.

2.7 SQL

The term SQL stands for Structured Query Language and is the language for accessing
relational databases. SQL was developed by IBM and standardized by ANSI (American
National Standards Institute) in 1986. One year later, this standard was adopted by
the ISO (International Organization for Standardization) [Mar93]. The language was
initially intended to be used by an end user to access the data in a database. Today,
however, graphical user interfaces are used for this purpose, with SQL being used more
as a language for database programming [Sch17]. SQL statements are then written to
access relational databases. These are divided into three classes [Mar93]:

Data-Definition-Language (DDL). Statements belonging to this class are used to
create, modify or delete data structures.

Data-Control-Language (DCL). These statements can be used to assign access
rights to the database. In this way, the access rights of several users can be managed so
that some only have read-only rights to the database, for example.

Data-Manipulation-Language (DML). Statments from this class are used to query,
change, add or delete data.

SQL is a descriptive language, which makes it easier for end users to formulate statements
in SQL, as a statement is structured in such a way that it describes the desired result
[Kau23]. In Listing 2.2, for example, a SELECT statement, which belongs to the Data
Manipulation Language class and is for querying data, is used to select the surname
and first name of a customer from the Customer table, where the customer number is 1.

Listing 2.2: SQL SELECT Statement

SELECT surname, firstname FROM customer WHERE customer_number = 1;

11

3 Related Work

The search for related literature was conducted on the databases AIS, IEEXplore,
Sciencedirect, ACM and the online library of the Technische Hochschule Mittelhessen.
The keywords "data integration platform", "etl" and "data warehouse" were used for
the search strings. Only publications published after the year 2000 were taken into
consideration. The following criteria were used to further limit the publications: (1)
It is about the conception or implementation of a proprietary system. (2) It is a
market analysis of current data integration systems. After applying these criteria, nine
publications were considered relevant and examined more closely.

A great need for data integration platforms can be found in the biological and medical
field. Four of the selected papers are assigned to this area and include the design and
implementation of a data integration platform. Jayaratne et al. [Jay19] propose an
open data integration platform for patient, clinical, medical and historical data available
across multiple health information systems. This should enable the centralization of
data sets as well as the possibility of connecting analysis and reporting solutions. The
data integration platform is implemented as a web application based on a three-tier
architecture. The first tier is the user interface, the second tier is the business logic
of the application and the third is the data access layer, which also contains the data
integration module. This module supports both regular and on-demand synchronization
of external data. The database schema is fixed here, and it is not intended to allow
users to modify their own data. The system is also limited in terms of modularity
and expansion of new external source systems, as the connectors to the clinical data
have all been implemented specifically for the systems used in the monolith of the
three-tier architecture and therefore simple expansion of connectors by e.g. a software
development kit (SDK) or similar is not intended. Winters-Miner et al. [WM15] describe
in their work the development of an IT infrastructure designed to intended to provide
validated clinical data for researchers and managers in the field of medicine. For the
implementation of data integration, they choose two components in their architecture,
the Medical Data Warehouse, a central database with all data stored in either relational
or multidimensional data structures, and a Data Collection Module, which is responsible
for the collection from external source systems. In addition to the components, five other
components are implemented for analyzing the data, but these are not relevant to the
topic of this thesis. The exact architecture of the individual components is not described

13

3 Related Work

further in this paper, which is why the extensibility of these cannot be estimated. In
addition, this work focuses on the integration of special clinical information systems,
which is why the integration of various types of data is limited. Modeling of the integrated
data by a user is also not provided for in this system. Lyu et al. [Lyu15] present the
design and implementation of another clinical data integration and management system.
This system is based on a hadoop platform, which can connect to multiple heterogeneous
source systems. For the integration of the data, they use a module that is implemented
with the Apache Camel framework and receives the data using the HL7 standard, which
is a group of international standards for the exchange of healthcare data. This module
sends these messages to the database – which is the Hadoop distributed file system
– via the predefined workflows, which contain routing rules and transformations. In
addition to the module for data integration, this system also offers a module for data
management, whereby this module only offers high-performance data queries and no
user-related data modeling. Like the previous system, this one is also specially designed
for the clinical context, which is made particularly clear by the use of the HL7 standards.
The last paper that comes into question as related literature in the field of biology or
medicine is a computational platform by Pasculescu et al. [Pas14]. They present the
platform CoreFlow, which was developed to handle, integrate and also model data. On
the presented platform it is possible to upload data into a relational database and to
process, correct or model it using user-defined scripts. The platform was primarily
designed for programmers to enable them to perform fast data analysis. The execution
of the scripts is implemented by using pipelines that use a hierarchical organization of
owners, projects, topics and tasks.

Another field in which two of the selected papers fall is that of urban infrastructure.
Harris and Sartipi [Har19] propose a data integration architecture further urban devel-
opment initiatives through this integration platform. This integration platform acts as
a central system that receives data from all source systems. The system is based on an
event-driven architecture in which the core of the system is the so-called data hub — a
cluster of several brokers. Other applications can then act as consumers or producers and
either integrate data or consume it for analysis. The proposed architecture is therefore
only part of an overall data integration platform, as it is not possible to integrate data
automatically without the need to develop your own producers. In addition, it does not
offer the possibility of data modeling. The second paper in this topic comes from Chen
et al. [Che22] They proposed a plan for building a cloud-based big data platform that
follows the innovative development of urban rail. The architecture of the cloud-based
big data platform consists of five layers and follows the everything-as-a-service approach
from cloud computing. At the bottom is the infrastructure-as-a-service layer, which
provides comprehensive virtualization services such as data processing, storage, network
and security. Above this is the platform-as-a-service layer, which contains general
application components such as a database, middleware, etc. On top of this layer is

14

the data-as-a-service layer, which provides data services such as data cleaning, data
standardization, data integration, etc. The aim of these services is to ensure that every
application can query data without having to consider the source from which it comes.
The data is standardized for this purpose. This is done by mapping the IDs of the
business systems to the master data IDs using a table. In addition to standardization,
the data objects of various system-related elements such as vehicles, signals, etc. are
combined, refined and modelled. This is already done with regard to the domain and
restricts the use of the platform with regard to use in another domain. The fourth layer
is the software-as-a-service, which contains various intelligent application services for
operation. The last layer is the display layer which shows data and analysis results.
The big data platform provides a common standard interface so that data consumers
can easily query the data. This interface can be extended via a low-code interface so
that new service interfaces can be generated when new requirements arise. In this way,
the system offers users the opportunity to create their own views of the data and thus
to model it in a way.

Another system for integrating data from multiple data sources is presented by Sarnovsky
et al. [Sar17], who are aiming to ‘design and develop the cross-sectorial scalable
environment, which will enable the data collection from different sources and support
the development of predictive functions to help the process industries in optimizing of
their production processes’. The system is based on Apache Hadoop and uses Apache
NiFi for the implementation of data integration, which supports a variety of modules for
transformation and integration, but can also be extended with custom modules. This
enables great flexibility in the integration of different data types from external data
sources. In addition, Apache NiFi offers the possibility to define the workflows for the
integration via a graphical user interface.

As the last paper to be considered, Nie et al. [Nie21] present a design of a big data
integration platform based on a hybrid hierarchy architecture. The architecture is
based on a classic data warehouse architecture, in which the data from the various data
sources is loaded into a data warehouse. However, to increase query performance, they
divide the data sources into different topics according to the business logic and then
add intermediate data sources with this data. Thus, when extending an external data
source, only the topic needs to be extended, which significantly increases the scalability
and performance of the system. This approach severely limits the use of the system in
different domains, as the subject areas must be defined during implementation.

As the research has shown, there are many approaches for the development of a data
integration platform. Almost all of them show a major limitation with regard to easy
data modeling by a user. Only Chen et al. offer a low-code approach by creating
new interfaces via an API. The search in the literature for systems that offer this
possibility proved to be difficult. No paper could be identified that describes the design

15

3 Related Work

or development of a system that allows data to be modeled using a low-code platform.
Only Hoseini et al. [Hos24] mention the semantic layer of AtScale in their work, in
which they provide an overview of semantic data management and semantic modeling.
AtScale is a product of the company of the same name that takes the approach of
providing data integration through data modeling in a canvas in which users can create
relationships and hierarchies between heterogeneous data sources from different data
stores.

16

4 Requirements

To be able to answer the research question raised in Section 1.2, a system is necessary
that fulfills the requirements of a data integration platform as well as the special
requirements of a company. In order for the system to achieve this, requirements are
defined in this chapter on the basis of which the system is then conceptualized.

The requirements of a data integration platform can be derived from the requirements of
data warehouses and their ETL processes, whereas a different methodology is needed to
meet the company-specific requirements. Since, as already mentioned, the development
of the concept arose from the need of an energy supplier for such a system and accordingly
a specification sheet was created at the beginning, the requirements were derived from
the general requirements for data integration platforms and the functional requirements
listed in the specification sheet (see table 4.1 for an excerpt).

No. Functional requirements
1 It is possible to create, remove and configure connections to source

systems via an interface in order to automatically query data from
them.

2 The raw imported data is available unchanged for error detection.
3 It is possible to transform or plausibilize data when loading into the

target system.
4 Data can be entered manually into the Core Database or existing data

can be adapted via an interface.
5 The imported data can be modeled by the user into a business view.

Table 4.1: Excerpt from the Functional Requirements of the Specifications Sheet

In order to counteract the fact that there was only one steakholder’s specification sheet,
the use cases from other domains that emerged in the literature research were also taken
into account when selecting the requirements listed there. In this way, the requirements
offer a range that finally makes the system usable for many domains.

17

4 Requirements

4.1 User Requirements

Combining different data sources (U1). Combining data from different sources
is a key component of a data warehouse [Sch16]. As described in Chapter 2, the ETL
process is responsible for this. Based on this, a user should be able to use the system to
define external source systems of all kinds, such as a MySQL database, an Excel file,
etc., as an interface in order to load the data from these sources into the system. The
user should be able to precisely define the required data from the source.

Manual and automatic data import (U2). Both from the extraction phase of the
ETL process and from the requirements of the specification sheet, it can be deduced that
the data from the various data sources should be imported into the system manually or
automatically at specific intervals configured by the user [Bau13]. The user should be
able to define these times for the various data sources and decide how the data should
be imported, whether all data from the source system should be imported and the
existing data overwritten or whether only new data should be appended to the data
already imported.

Source independent data storage (U3). It should be possible to store all possible
data, regardless of its source and whether structured or unstructured, uniformly in the
system’s central database [Bau13]. Such a transformation can be useful both for the
actual values, e.g. to parse data types, but also for the structure of the data, e.g. the
name of a column, because this has hardly any meaning in the source system.

Plausibility check of data (U4). In addition to the transformation of the imported
data, it is also necessary to check the plausibility of the data for subsequent analysis.
On the one hand, this is a specific requirement of the energy supplier with regard to
incorrect meter data; on the other hand, plausibility checks are an important part of
data quality, which in turn is an essential task of data integration platforms [Alo17].
With regard to the various stakeholders interested in such software the system should
make it possible to execute all possible algorithms for the plausibility check of data
during an import on the imported data.

Overwrite data manually (U5). In addition to the modification of data by plausibility
algorithms, it should also be possible to manually adjust or create certain entries by
a user so that their completeness can be guaranteed for analyses. This requirement
arises directly from the specification sheet, but represents a useful function overall and
is therefore also generally interesting.

All original values are available (U6). All data loaded into the system from external
sources should be available in its original form and accessible to users. This means that
even if plausibility checks or manually overwritten values are possible, it should still

18

4.2 System Requirements

be an option to view the data taken from the external sources for further analysis of
possible faulty data. This is important for the required error detection and fulfills the
task of versioning in the data warehouse.

User-defined modeling of imported data (U7). Translating the technical view into
the business view is an important part of data warehousing [Sch16]. Therefore, the user
should be able to create a user-defined view of all imported data from different source
systems. To do this, they must be able to join different imported tables, dynamically
define primary keys, and dynamically create additional attributes and additional views.

Easy to use via a low-code platform (U8). As described in Section 2.6, LCPs are
intended to bridge the gap between experienced software developers and people with
little or no experience in software engineering. This makes it possible for many more
employees to use the system’s functions. In addition, the research question asks for an
easy-to-use platform. Therefore, the system should provide the all the functions required
by the user requirements via a graphical user interface. This should make it as easy
as possible to perform all functions, even without experience in software development
or a deeper understanding of IT. These requirements are therefore also the basis for
the other user requirements, as these are always to be executed via a graphical user
interface.

4.2 System Requirements

In addition to the requirements that a user has of the system, there are also two system
requirements that are essential for the conception and implementation of the required
system.

Secure and efficient data storage (S1). The data stored in a company is sensitive,
which can also be derived from the requirements of the specification sheet. Therefore,
all data imported from source systems should be stored securely. It should be possible
to secure access to this data as well as the import process. Another requirement that
arises from dealing with the rapidly increasing volume of data is the efficient storage of
data. It should be possible to add only new data during import and remove duplicate
data.

Scalability and modularity (S2). As mentioned in the introduction, the amount
of data created is increasing rapidly. The system should therefore be easily scalable
in order to respond flexibly and efficiently to growing data volumes. In addition, the
scalability must also ensure the availability of the system. Good scalability of such an
extensive system also requires a certain degree of modularity in order to be able to

19

4 Requirements

expand or replace individual services. Here too, the modularity of the system should
meet future requirements so that the system remains adaptable in any case.

4.3 Business Requirements

Contrary to the user and system requirements, the business requirements are always
dependent on the company. For this reason, two general business requirements are
derived, which every company should pursue.

Cost-effectively development (B1). The system should be designed in such a way
that it can be implemented cost-effectively despite the wide range of functions.

Time-saving development (B2). The analyses that are finally based on the com-
bined, plausibilized data can have a direct impact on the company. In the case of the
energy supplier, for example, it needs certain analyses in order to comply with certain
regulations by a certain date. The analyses can also save costs or provide advantages
over competitors, and since this system forms the basis of the analyses, this leads to
the requirement for time-saving development.

20

5 Concept

The concept is based on the requirements mentioned in Chapter 4, as well as on the
findings of the research of related work described in Chapter 3. For a more detailed
consideration of this concept, the selected architecture is first examined in more detail
in order to then explain the individual selected services of the architecture closer.

5.1 Architecture

For the selection of the basic architecture of the system, special attention must be paid
to the system requirement S2, as the software architecture has a strong influence on
this and must therefore fulfill it.

The architecture characteristics rating by Richard [Ric20], which rates known architec-
tural styles in several categories on a star scale from 1 to 5 stars, was used for a first
selection of possible suitable software architectures. The rating includes a total of eight
architectures, each of which has its strengths in different areas. Due to the requirement
S2, the characteristics of scalability and modularity were taken into account for the
preselection of suitable architectures (see table 5.1).

Here, the architecture should have an average rating of greater than or equal to four
in order to meet the requirement S2. With this restriction, the architecture styles
Layered Architecture Style, Pipeline Architecture Style, Microkernel Architecture Style,
Service-Based Architecture Style and Orchestration-Driven SOA are excluded and are

Architecture Style Modularity Scalebility Average
Layered Architecture Style ⋆ ⋆ 1
Pipeline Architecture Style ⋆ ⋆ ⋆ ⋆ 2
Microkernel Architecture Style ⋆ ⋆ ⋆ ⋆ 2
Service-Based Architecture Style ⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆ 3.5
Event-Driven Architecture Style ⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 4.5
Space-Based Architecture Style ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 4
Orchestration-Driven SOA ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆ 3.5
Microservices Architecture ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 5

Table 5.1: Architecture Characteristics Rating [Ric20]

21

5 Concept

therefore not explained in more detail in this section. The remaining three will be
considered in more detail for the final selection.

Event-Driven Architecture Style. The event-driven architecture (EDA) style is an
asynchronous distributed architecture style in which individual components receive and
process events asynchronously based on events sent over an event bus (see Figure 5.1)
[Ric15].

Event
Broker

Client

Initiating Event

Channel Channel

Client

Initiating Event

Event
Processor

Event
Processor

Figure 5.1: Event-Driven Architecture

This architecture style allows highly scalable and high-performance applications to be
built [Ric20], which meets the S1 and S2 requirements. An event-driven architecture is
also suitable for the two user requirements U2 and U4, since both the data import is
triggered by an event, which is triggered either manually by the user or periodically
by the system, and the plausibility check of the data, which is to be checked each time
the data is imported. Especially for requirement U2, the event-driven approach is
advantageous because it offers a high advantage for processing a high number of data
arriving at a high input rate. [Bru10]

However, this style has a disadvantage in terms of modularity, especially with regard
to the use of open source software. Since communication takes place via event buses
and the individual event processors have to be connected to these, the EDA offers
a restriction with regard to the selection of various open source tools as individual
services and also to their interchangeability. Another disadvantage is the complexity in
development due to the asynchronous nature of the architecture style [Ric20].

Space-Based Architecture Style. The space-based architecture style is designed
for applications that needs a high scalability. The higher scalability is achieved by
representing a service with one or more processing units. A unit holds the required
application data in the cache and replicates it to all other processing units of the service.
This allows the number of processing units to be dynamically adjusted and thus scaled.
Storing the data in the cache also optimizes performance. However, it is not well suited

22

5.2 Services

for large database applications with large amounts of data and is also complex and
expensive to implement, which is contradictory to B1. [Ric15]

Microservices Architecture. As the name suggests, the microservice architecture
consists of small, independent services that each perform a specific task and thus work
together as a complete system [New15]. The special aspect of these services is that they
all represent an independent deployed unit and are therefore completely decoupled from
each other. Communication between the services takes place via a remote access protocol
such as REST, AMQP, etc. [Ric15] With this concept, the microservice architecture
offers a high degree of modularization, as the service granularity means that a single
service is used for a task, which can be connected via a defined interface, but can also be
exchanged, which in turn leads to easy replaceability and thus meets the requirements
S2. In addition, the completely decoupled services provide technological freedom in
the development of the individual services, which means that the technologies can be
selected to be more problem-specific [Wol18]. The latter characteristic is particularly
advantageous for the goal of using open source software, as the selection of open source
tools is greater. In contrast to the other architecture styles presented, the development
is significantly less complex, as the development of the individual services is isolated
from each other and changes usually only affect the individual service [Ric15].

It turns out that both the event-driven and the microservice architecture styles offer
their advantages in order to fulfill the requirements mentioned. The architecture chosen
as the basis for the concept of the system described in this thesis is therefore a mixture
of both architectural styles. The basis is the microservice architecture style, which in
some cases uses the event-driven style for the communication of services in order to
eliminate bottlenecks, e.g. in case of a backlog of requests [Ric20].

5.2 Services

For a more precise definition of the individual services of the system, it is necessary to
take a look at the important concept of a service within a microservice architecture.
There are two basic rules: Firstly, there should be a low level of dependency between
the various services in order to ensure loose coupling, and secondly, all components of a
microservice should offer a high level of cohesion to ensure that they belong together.
[Wol18, New15] Following these two rules, the architecture shown in Figure 5.2 was
defined.

For a more detailed explanation of this concept, the individual services are described
below. Three aspects are presented here. Firstly, it is explained why the part of
the system represents an own microservice, secondly, the development of the service

23

5 Concept

Semantic Layer

Model-Synchronizer

Data-
Integration

API-Layer

Graphical User Interface

Core-Database

Plausibility

Figure 5.2: Overview of the Concept and its Microservices

structure is looked at and finally the final design of the microservice. In order to meet
the requirements B1 and B2, the concept is based on the use of open source software.
However, the choice of software is not determined by the concept. Rather, the concept
describes the individual components that can then be implemented using open source
software.

5.2.1 Data Integration

Reasons for an own microservice

As described above, all components of a microservice should offer a high level of cohesion.
With regard to the requirements from Chapter 4, U1 - U3 represent just such a cohesion.
The extraction of data from external sources, the following transformation and the final
loading form a common process known as the ETL process. Such an ETL process does
not necessarily have to be a separate service, but can also form a service together with
the central database. However, the requirements S2 speak against this approach. As
ETL tools are often used for the implementation of ETL processes, such tools can be
integrated into the system as an open source solution and exchanged if necessary; this
is not the case if it is implemented together with the central database. In addition,
outsourcing the data integration can also reduce the traffic on the central database
[Sch16].

24

5.2 Services

Deriving the design

There are three different approaches to integrating data from source systems into a
target system: the materialized approach, the virtual approach and the hybrid approach.
Basically, they consist of the same structure, the data layer, which contains all source
systems, a wrapper or charger layer, which enables access to the source systems and the
extraction of data from them, and the warehouse or mediator layer, which enables the
retrieval of data via a global schema. [Mas24]

In the following, these approaches are considered in more detail with regard to the
requirements of the system described in this thesis in order to derive the design of the
service. An overview of all approaches can be seen in Figure 5.3.

Materialized approach. The materialized approach describes the approach of a classic
data warehouse. Here, the data is extracted from the source systems and physically
integrated into the data warehouse, which then provides the user with a unified view of
the data. Users who want to query this data submit their queries to the data warehouse
and not to the source system. An ETL tool is responsible for integrating the data in
the materialized approach. [Mas24]

Virtual approach. With the virtual approach, the data is not transferred from the
source systems to a target database but remains in the source systems. In order to
provide the user with a uniform view of the data, a mediator is used instead of a
data warehouse. This only holds the view of the data, but not the data itself. A
wrapper is provided for each source system so that the mediator can query data from
the data sources in a standardized language [Mas24]. In contrast to the materialized
approach, the virtual approach has the advantage that fewer data is generated as it is
not repoduced.

Hybrid approach. The hybrid approach was developed for more flexible data inte-
gration systems. This consists of a combination of the materialized and the virtual
approach. Depending on requirements, the data is loaded either from a data warehouse
or directly from the data sources. [Mas24]

With regard to the requirements set out in Chapter 4, the virtual approach can’t be
used. Since it should be possible to edit the data or add new data (U5), but these may
not be edited in the source systems, a separate database is required in which entries
can be written. With the hybrid approach, however, this would be possible. Here, new
entries could be added to the data warehouse. However, the hybrid approach has a
disadvantage compared to the materialized approach in terms of modularity. With the
materialized approach, all data is transferred via the ETL tool. This makes it easier to
scale and exchange (S2). There are also many ETL tools on the market, which makes

25

5 Concept

App

Data Warehouse

ETL Tool

App

Wrapper

Mediator

Wrapper

App

Wrapper Wrapper

Mediator WH

Data layer

Warehouse/
mediator layer

Wrapper/
charger layer

Figure 5.3: Data Integration Approaches [Mas24]

it easy to find an open source solution for the entire process and the integration process
can be more clearly separated as a service. This benefits the microservice architecture.
In addition, ETL tools often offer many connectors and a simple extension of additional
connectors, which is not the case with wrappers. In this case, the wrappers would have
to be re-implemented for each external source.

For these reasons, the materialized approach was chosen for the design of the Data
Integration service, which basically implements an ETL-Tool.

Design

The Data Integration service consists of several components to map the functional scope
of an ETL tool as shown in Figure 5.4.

Data Integration

API

Config Broker

Worker
ExtractTransformLoad SourceDestination

Scheduler

Figure 5.4: Design of the ETL-Service

26

5.2 Services

The Data Integration service implements an event-driven architecture. This is because
the execution of the ETL process is always triggered by a specific event and is then
executed asynchronously. This architecture also ensures that all processes are eventually
executed and are not lost, meaning that there is no loss of data to be integrated [Ric20].

API-Layer. To allow a user to configure the ETL process via a graphical interface and
define stored transformation functions, the service requires a REST API that provides
these functions.

Config-Database. Saving the information sent by the user through the API, the
service must have its own database. This contains all the configurations for the ETL
process, such as information about the data sources, transformation functions to be
executed or the choosen extraction period. The Scheduler can then trigger the ETL
processes based on this data.

Scheduler. To ensure that the ETL process is executed at the extraction period
selected by the user, a scheduler is required that triggers the process at the times stored
in the database. This task is performed by the Scheduler. Since the architecture of the
data integration service is an event-driven architecture, the Scheduler acts as a producer.
It creates jobs based on the information from the database, which it then passes on to
the Broker.

Broker. The Broker acts as middleware between the producer and the conusmer. In
this case, it receives the events from the scheduler and passes them on to the conusmer,
which in this case is the Worker.

Worker. Once the jobs to be processed are available in the Broker, the Worker can
take them and process them one after the other. For a simpler explanation, only one
Worker is shown in Figure 5.4, but there can also be several workers processing the jobs
in parallel. The worker itself has then implemented the ETL process already explained
in Section 2.2, which then pulls the data from the external source using the functions
stored in the job, transforms it if necessary and finally writes it to the Core Database.

With regard to the requirement U6, there is still a restriction in the transformation phase
of the ETL process. Since the data should be available in the original data warehouse,
the transformations are limited to the syntactic and structural transformations described
in Section 2.2.2. There is a separate service for the semantic transformations to meet
all requirements (see Section 5.2.3).

27

5 Concept

5.2.2 Core Database

Reasons for an own microservice

The Core Database represents the heart of the system. It forms the central data storage
of the system and therefore has to fulfill several requirements. All data from the source
systems should be stored in the database (U3), this data should be able to be modified
by further services or by a user or new values should be added (U4 and U5). Despite
the availability of these options, all originally imported data should be available at all
times. These requirements are closely related and should therefore be summarized in a
service. In addition to the user requirements, however, it also makes sense to provide the
central data storage in a separate service, as this ensures a loose coupling, which helps
to fulfill S2. As a result, the service remains modular, and the data storage technology
can be adapted as requirements increase.

Deriving the design

The core data initially consists of a database, which is why an extensive design for
storing the data is not necessary at first glance. The choice of technology is the most
important factor here, but this is not considered in this chapter and is only examined
for the implementation in Chapter 6. Due to the requirements U5 and U6 set out in
Chapter 4, however, a special design is required, as data should always be available in
its original state, but should also be modifiable.

It is a well-known versioning concept that data is available in its original state as well
as in all other states. All changes should be logged in the database and be available.
With the 2016 version of SQL Server, Microsoft has provided a similar feature that uses
temporal tables to track changes to data [Kon18]. The Microsoft feature is primarily
there to enable simple point-in-time analysis. However, the concept behind it can be an
inspiration for fulfilling the requirements U5 and U6 of the Core Database. System
versioning from SQL Server 2016 is implemented with the help of a current and a history
table. In the history table, two time columns are added in addition to the data to define
the validity period of the data. The current table always holds the current valid value,
while the historical table contains all previous values (see Figure 5.5). [Mic23]

One problem that arises from this approach is the overwriting of the original values in
the current table. In the system on which the thesis is based, the ETL tool writes to
the current table. If a user wants to edit or add values in it, according to Microsoft’s
approach, the values in the current table would be overwritten and added, and the
previous values would be written to the historical table. However, this would then

28

5.2 Services

Temporal Table
(current values)

History Table
(historic values)

Item Value

A
B
C
D
E

100
50
200
175
450

Item Value

A
B
A
C

50
45
75
175

Start End

2023-09-01
2023-08-31
2023-09-02
2023-09-01

2023-09-02
2023-09-04
2023-09-08
2023-09-09

1 m

Figure 5.5: Temporal Tables in SQL Server 2016 [McD24]

result in duplicated values if the added value is finally added via the ETL tool. For
the use case of the Core Database, it would make sense to divide tables into a table
with the original data and the overwritten data for better analysis, instead of dividing
historical and current data. In this way, the ETL could always write to the table with
the original data, with changes made by the user ending up in the analysis data table.
Since not all the most current values are in one table, a component would be needed that
brings this information together and provides the user with the most current values in
a standardized way. Here it is interesting to take a look at the hybrid approach to data
integration described in Section 5.2.1. In this, a mediator is responsible for providing a
uniform view of data from the source systems and those in the data warehouse. This
approach can help, as a mediator is responsible for querying the data to determine
whether data is read from the table with the original data or from the table with the
analysis data, thus enabling a uniform view.

Design

The core database service consists of a database, a mediator and an API-Layer as shown
in Figure 5.6.

Core-Database

ETL

API

Mediator

analyse data original data

Figure 5.6: Design of the Core Database

29

5 Concept

Database. The Database contains two groups of tables. Firstly, all tables that are
created by the ETL tool and therefore contain the original data from the source systems.
This group of tables is described as original data. This second group is described as
analyse data. These tables are a replica of the original tables, but only contain data
that has been added or changed by a user or another service such as the Plausibility
service (see 5.2.3). In addition, these tables also contain a modification date so that the
mediator can deliver the current data to the user.

Mediator. The Mediator is responsible for providing a uniform view of both table
groups. It is therefore possible to query all original data via the mediator, in which case
it returns the data from the original data tables or all current data. In this case, the
mediator searches for the most current values from the original data and analysis data
tables and returns them in a merged form.

API-Layer. The API-Layer provides a REST API via which a user or a service can
query the data via the mediator or edit or add data from the original data tables by
adding entries to the analysis data tables. When querying the data, the user can decide
what type of data they want to query by specifying parameters.

5.2.3 Plausibility

Reasons for an own microservice

The plausibility check of data is usually part of the ETL process. In this case, it belongs
to the semantic transformations. Since the ETL tool’s transformations are limited to
syntactic and structural transformations, it needs a way to check the plausibility of data
after it has been imported into the Core Database.

As database management systems have become more powerful and the need for a
scalable solution for complex transformation processes has arisen, the so-called ELT
(Extract, Load, Transform) approach has developed alongside the ETL approach. Here,
the data is extracted from the source system and loaded in its raw form into the target
system, where it is transformed on request [Ros13]. Since the Core Database and thus
the target system is a separate microservice for the reasons mentioned in Section 5.2.2,
the ELT approach is followed, but the transformations are outsourced to a separate
service. This creates several advantages:

• Original data is available more quickly in the Core Database, as complex transfor-
mations are executed separately.

• The plausibility check service can be scaled separately.

30

5.2 Services

• Plausibility checks can be developed independently of the ETL tool used.

Deriving the design

The plausibility check should always be triggered by the import of new data and the
required transformations should be executed depending on the newly imported data.
It therefore requires a service that detects changes in the database and executes the
transformation process depending on the changes.

There is a change data capture procedure for the automatic detection of data changes
in a database. All changes to a database are logged with the associated information.
Many frameworks that implement such a procedure also offer the option of subscribing
to such changes and thus always being notified of the latest changes. [Sch16]

In addition to receiving changes, the service needs the option for users to perform
any transformations. The user should be able to specify which transformations are to
be executed when changes are made to the database. These requirements have many
parallels to Continuous Integration (CI) and Continuous Delivery (CD) pipelines in the
software development process. In these, code changes trigger processes that the user
can define themselves, e.g. the execution of special software tests, the validation of code
style or the building of containers. For this reason, the architecture of CI/CD tools was
considered in order to derive the design of the service. These tools have a similar basic
structure as seen in Figure 5.7. First, there is an interface with which it is possible to
trigger certain events. Depending on the event, a job is then created that contains all
the information required to execute the desired process. Runners are used to execute
the content of the job. These can be virtual machines or containers that are specially
provided for the execution of the job and execute the desired process with the help of
the information stored in the job. [Git24b, Git24c]

Event

Interface

Runner nRunner 1

Job 1 Job n

Workflow

...

...

Figure 5.7: Basic CI/CD Architecture [Las23, Git24c]

31

5 Concept

To get a more detailed look at the architecture of such a tool, Weynand et al. [Wey17]
presented the architecture of the continuous integration software TravisCI in more detail.
As an interface for triggering events, Travis CI contains a listener that listens for changes
from GitHub and then sends a request to the second component, the gatekeeper, which
is responsible for creating the required jobs from this request. The Scheduler is the
third component, which is responsible for managing all created jobs, e.g. by grouping
and prioritizing them. The last component in the pipeline process is the Worker, which
starts a virtual machine for the job planned by the scheduler and finally executes the
job.

Design

The plausibility check service is based on this design described by Weynand et al.
[Wey17]. Like the Data Integration Service and the architectures of the CI/CD tools, it
follows an event-driven architecture and contains the following components:

Plausibility

API

DB Change Detection

DB
Scheduler Worker

Broker

Container

Figure 5.8: Design of the Plausibility Service

API-Layer. The plausibility check service should also provide a REST API for a user.
This can be used to create so-called tasks, which defines which plausibility checks are
to be executed for which database changes. For example, the user can specify that an
address correction should be executed if data in the user table changes. In addition,
dependencies between tasks can also be defined here if a plausibility check process
requires another one to be performed first.

Database. The Database stores the tasks created by the user so that the scheduler can
query this information from the database later in the process and finally create the job.

DB Change Detection. Database Change Detection is the service interface for the
triggering events. As mentioned at the beginning of the section, an implementation of

32

5.2 Services

the change data capture process is used here, whereby the service receives all changes
to a database via this component.

Broker. The changes received by the DB Change Detection component are put in
the Broker’s queue. This ensures that all changes are processed at some point and are
therefore also checked for plausibility.

Scheduler. The Scheduler component takes care of managing the tasks created by the
user and the incoming database changes. For this purpose, the Scheduler is attached
to the Broker as a consumer and therefore receives all incoming changes to the Core
Database. If it receives one, it looks in the service’s own database for all tasks created
by the user that are dependent on the incoming change and creates jobs for them. It is
also the task of the Scheduler to manage dependencies between tasks correctly and to
ensure that all tasks are executed at some point. To do this, the Scheduler puts the
created jobs in the Broker’s queue so that the worker(s) can execute the jobs.

Worker. The Worker consumes the jobs placed in the queue by the Scheduler and
creates containers for the execution of the necessary plausibility checks. It is responsible
for managing the containers and for writing the results back to the Core Database.

Container. In contrast to the virtual machines used by Travis CI for executing the
runners, containers are spawned by the Worker, which has the advantage that they are
more lightweight (see Section 2.5) but also that plausibility algorithms can be developed
independently of the platform and programming language and then only need to be
available as a Docker image. Only the url to the image needs to be stored in the task
configuration so that the Worker can download and start the container.

5.2.4 Semantic Layer

Reasons for an own microservice

To allow the user to create user-defined views of the data in the Core Database (U7),
there needs to be a way to model data. It would be quite possible to add a component to
the Core Database that lies as a layer between the API layer and the database. However,
this would be to the disadvantage of modularity (S2), as the implementation of the data
modeling is directly linked to the database, making it more difficult to exchange the
database. In addition, the database would not scale independently in this case, which
can be a problem, as it may be necessary for performance to cache the user-defined
view of the data to enable faster queries. Depending on requirements, such a service
can be scaled independently of the Core Database.

33

5 Concept

Deriving the design

It is a well-known problem that data in data warehouses is often not provided in the
business presentation needed by the user due to the various sources. To counter this
problem, there are two ways of making data available to the user in the business logic.
Firstly, the data from the various source systems can be transformed during the ETL
process so that it can be stored in the same entity in the target system. However, this
requires complex transformation, depending on how much the schema of the source
systems differs. In addition, this type of linking is not very flexible due to the complex
transformation steps. The second option is the concept of the semantic layer. The
semantic layer provides the link between the database and the platform that users use
for analysis [Sch16]. Using this layer, a user can create semantic models that represent
the business logic. This is achieved by using a semantic model as a projection and
mapping the entities and relationships of the business logic to the database schema
[Hos24]. In addition, metrics can be defined in the semantic model that are not available
in the raw data, such as the turnover of a company. Furthermore, a semantic layer can
provide performance improvements for user queries. It achieves this, for example, by
pre-storing users’ database queries, which minimizes traffic to the Core Database, or
by pre-calculating metrics in order to make them available to the user more quickly. A
semantic layer that is independent of the raw data and the analysis platform, as in this
case, is referred to as a universal semantic layer. [AtS24]

Design

In conventional universal semantic layers, the semantic models are predefined views of
the raw data [AtS24]. With a view to request U7, however, it is necessary to create the
semantic models and thus the views of the raw data dynamically via a user interface.
For this reason, the semantic layer of this system basically requires four components
(see Figure 5.9).

API-Layer. Using the service’s REST API, a user can add metrics to existing data
models, link data models together and create new views from linked data models.
Furthermore, all data queries for analyzing the data of the Core Database are made via
this interface. This means that the user always queries the created business logic of the
data and can benefit from the performance optimizations described.

Config DB. To store all data modeling performed by the user, the service has a
configuration database. This only holds the information about the data models, views
and metrics created.

34

5.2 Services

Semantic Layer

API

Caching
Config

Data Modeling
Core-DB

Figure 5.9: Design of the Semantic Layer

Data Modeling. The data modeling component is responsible for the described
transformation of the technical view of the Core Database into the business logic
defined by the user. This component takes the information stored by the user in the
configuration database and dynamically creates the views of the raw data.

Caching. To avoid having to recalculate all views and metrics every time the user
makes a request via the REST API, there is a caching component that keeps the data
in the cache and can therefore make it available to the user more quickly.

5.2.5 Model Synchronizer

Reasons for an own microservice

With the use of a data integration service and a universal semantic layer, a problem
arises with regard to the synchronization of tables newly created by the data integration
service and the models provided via the semantic layer. The user would like to have
all existing tables of the Core Database available during modeling and not have to
create them first when importing from a new source system. This requires a service
that registers newly created tables in the Core Database and automatically creates a
model for this data in the semantic layer. Since the semantic layer is independent of the
Core Database used, the model synchronizer should also be implemented independently
of both services to ensure modularity.

Deriving the design

There are two ways to log changes in a database: Trigger and change data capture. The
former was used in the plausibility check to track all changes in the Core Database.

35

5 Concept

The Model Synchronizer, on the other hand, only requires the logging of changes
regarding the creation and modification of tables, which in SQL are commands of the
data definition language. Triggers that listen to these commands and then create data
models in the semantic layer are therefore suitable here. These triggers must therefore
be implemented in the Core Database so that they are written to a channel when tables
are changed.

Design

In line with the simple derivation of a Model Synchronizer design, it also has a corre-
spondingly simple structure (see Figure 5.10). It consists of a component that receives
changes by consuming a channel, then translates these into the structure of the data
models of the semantic layer and finally creates the data models by making a request to
the interface of the semantic layer.

Model-Synchronizer

DB Listener

Model Transformer

Model Controller

Table changes

Data models

Figure 5.10: Design of the Model Synchronizer

5.2.6 API-Layer

Reasons for an own microservice

By using the microservice architecture, each service offers its own, usually fine-grained
interface for certain configurations or queries [Zha18]. So if a user wants to use all
the functions of the system, they must use a client that interacts with the many
different services. This leads to a strong coupling between the client and the individual
microservices, which has disadvantages. The client must have precise information about
the structure of the system, i.e. how many services it is divided into. In addition, it
must be adapted each time the services are further developed, as breaking changes
to the microservices automatically require breaking changes to the client application.
Another problem is performance. Since the use of many microservices can result in
several services having to be requested when loading a user interface, this can lead to

36

5.2 Services

high latency, which can result in multiple network round trips between client and server.
A final major disadvantage is the security of the interfaces. As every microservice
must be able to be requested by the user, every service interface must also be publicly
available. This means that each microservice is also responsible for the security of the
interface. On the one hand, this increases the attack surface of the system, but on the
other hand it also increases the development effort. [Mic24]

To deal with these disadvantages, it therefore seems reasonable to provide a separate
API layer as a service that manages the communication between the clients and the
microservices.

Design

As the described problems with communication between clients and microservices are
known, there is a pattern that stands for the design of the required API layer as a single
service — the API gateway pattern. The API Gateway forms a central management
interface at the boundary of the system [Zha18] and is therefore located between the
clients and the microservices. It acts as a kind of reverse proxy that forwards the client’s
requests to the individual microservices [Mic24]. In addition to managing requests, the
API gateway can also offer other advantages such as load balancing, authorization,
caching and much more.

According to the API gateway pattern, the API gateway is located between the mi-
croservices and the client. And contrary to not using an API gateway, it manages all
requests from one or more clients as shown in Figure 5.11.

Client

System

Microservice 1

Microservice 2

Microservice 3

System

Microservice 1

Microservice 2

Microservice 3

AP
I G

at
ew

ay

Client

Figure 5.11: Design of the API Gateway

37

5 Concept

5.3 Graphical User Interface

Due to the described microservices and their API layers, which are available collectively
via the API gateway, the system now offers almost the entire range of functions and
therefore fulfills the requirements specified in Chapter 4. With U8, however, one of the
main requirements is not yet fulfilled. In order for users to be able to use the entire
range of functions without in-depth IT knowledge, a user interface is required that
allows all functionalities to be managed in one application via graphical components.

As the concept of the technical implementation depends strongly on the environment in
which the application is to be integrated, this section only deals with the concept of the
graphical user interface components. The concept of an exemplary implementation as
a web application can be found in Section 6. The following sections therefore present
concepts for graphical low-code data modelling, data integration and plausibility checks.

5.3.1 Data integration

There are two variants on the ETL tool market for the low-code configuration of data
integration and therefore the ETL process. The most common variant is the use of
interactive flow charts to create pipelines, which then define the ETL process. The
second variant is the less common, but simpler variant for the user - configuration with
the help of a so-called stepper, i.e. the specification of information in several predefined
steps. This type of implementation is used by Airbyte, among others.

The use of an interactive flow chart offers advantages when more complex pipelines have
to be created by a user, e.g. by combining several transformations one after the other.
However, in view of the required range of functions of the system conceptualized in
this thesis, the types of transformations are limited. In particular, the transformations
that require user interaction are limited to the structural transformations, while the
syntactic transformations can be executed automatically by the ETL tool depending
on the target system. For this reason, implementing the graphical user interface for
configuring the ETL process as a stepper is the more user-friendly option in this case.
The structure of the stepper is divided into the following steps:

Type of source system. The first step is to select the type of source system, as
different options have to be configured in the next steps depending on this. The types
provided depend on the connectors provided by the Data Integration service. Many
open source ETL tools offer a wide range of connectors out of the box, but also the
option to extend the tool with additional connectors. If an additional connector needs
to be added, it must be implemented in the Data Integration service, but also provided
in the interface.

38

5.3 Graphical User Interface

Type Connection Testing Data selection Transformation

File

MySQL

PostgreSQL

REST-API

MSSQL

MongoDB

Figure 5.12: Wireframe of the Source System Type Selection

To get a more precise idea of the stepper, a sample type selection of the source systems
can be seen in Figure 5.12. Here, for example, the connectors for an automated or
manual import of files, from a REST API and from various database management
systems are offered. A distinction must be made here between the different systems, as,
as already mentioned, further configurations differ primarily in the connection to the
database.

Connection. After selecting the type of source system, the connection to it must be
configured. A form is therefore rendered here, which provides all possible configurations
for the connection to the source system. This can be, for example, the host, the port,
the username or a password for authentication. For files, the file format would still have
to be specified here, but this becomes obsolete if a database is selected as the source
system.

Type Connection Testing Data selection Transformation

 Host Port

 User Password

Figure 5.13: Wireframe of the Connection Configuration Step

In addition to configuring the connection, the import time must also be configured in
this step as part of the connection between the ETL tool and the source system. Here
there should be a choice between manual and a specification of regular times.

Testing. To ensure that an incorrect configuration of the connection is not only
noticed on the first attempt to import, the connection should be tested in the step after

39

5 Concept

configuration. To do this, the system should establish a connection in the background
using the specified configurations and display this to the user in this step in the case of
success or failure.

Type Connection Testing Data selection Transformation

Figure 5.14: Wireframe of the Connection Testing Step

Figure 5.14 shows an example of this step, as the client attempts to establish a connection
to the external source system. If this attempt fails, the user should be redirected to the
previous step to adjust the incorrect configurations.

Data selection. If the connection to the external source system can be established,
the user has the option of selecting the data to be extracted from the source system.
They can select entire tables or individual attributes. In addition, they can select the
extraction mechanism for the various tables as described in Section 2.2.1.

Type Connection Testing Data selection Transformation

Customer Full Extraction Import

ID Name Street

Figure 5.15: Wireframe of the Data Selection Step

In Figure 5.15, for example, the user decides to import the Customer table with the ID
attribute. The complete data set is to be overwritten with each import by selecting the
Full Extraction mechanism.

Transformation. Due to the limitations of the transformations in the ETL process,
no complex user interface is required for data integration. Similar to step one, the
implemented transformations are displayed here, for which further settings can be made
if required. Again, the transformation algorithms are added to the ETL tool during

40

5.3 Graphical User Interface

development, which means that the user only has to make a selection on the user
interface, but does not have to develop any complicated transformations themselves.

Type Connection Testing Data selection Transformation

 Normalization

 Schema Changes

Figure 5.16: Wireframe of the Transformation Step

Figure 5.16 shows examples of the transformations Normalization and Schema Changes.
This allows the user to decide without their own implementation that unstructured
or semi-structured data from the source systems is normalized and thus structured if
required. When making changes to the schema, the user has the option of renaming
columns, for example.

5.3.2 Data modeling

The biggest challenge of the graphical user interface is the provision of data modeling
as a low-code approach. Normally, data modeling is an important step in the design
process of a database. A suitable data model should be found in close cooperation with
the company or customer [Dav16]. However, using a central database that only contains
data from external source systems creates challenges in terms of data modeling, which
are solved in this system by the semantic layer. This translates the technical views of
the various data sources into those of the business logic. The mapping of the technical
view into the business logic also normally takes place in the semantic layer during the
design process. It would therefore be part of the development of the Semantic Layer
service. As already described in the service (see Section 5.2.4), this should provide all
imported tables as data models and enable a user to connect data models, extend data
models and create new views of these models via an interface. These functions should
now be available in the graphical user interface in the low-code approach.

Joining data models

In order to develop a graphical user interface for connecting data models, a look is
first taken at the connection of tables at database development level, more precisely

41

5 Concept

at connections with SQL. In SQL, connections between entities are realized by means
of so-called joins. For this purpose, both tables to be joined are specified as well as a
binding under which the entries are merged (see Listing 5.1).

Listing 5.1: Simple SQL Join Statement

SELECT * FROM table_a JOIN table_b on table_a.b_id = table_b.id;

In most and simplest cases, the condition is simply a comparison of two values in
the respective tables, but it can also be more complex conditions. In addition to the
conditions, different joins can also be used in SQL, which ultimately lead to different
results when querying data via the joins. To conceptualize a complete low-code solution
for the connections between two data models, these types of joins must also be considered.
A basic distinction is made between four joins: The inner join, outer join, left join and
right join.

Inner Join Outer Join

Left Join Right Join

table_a table_b

table_a table_b table_a table_b

table_a table_b

Figure 5.17: Four Types of Joins

As can be seen in the Figure 5.17, the different joins can be used to obtain different
intersections of the tables. An inner join therefore only returns data for which there are
values in table_a and in table_b after applying the condition. An outer join returns all
entries, a left join returns all entries from table_a and the corresponding entries from
table_b and a right join returns the opposite.

For the graphical user interface, a representation is required that shows the entities
and their relationships. The entity-relationship model (ERM) exists precisely for such a
representation. It contains three basic elements: The entities, their attributes and the
relationship types between the entities. The representation of the data models is also
inspired by this model. As shown in Figure 5.18, the data models are represented as
nodes in an interactive flowchart. In contrast to ERMs, the attributes of the data models
are displayed within the nodes for a better overview. As with ERMs, the connections

42

5.3 Graphical User Interface

are shown as edges between the data models. However, not only is an edge drawn
between data models, but also between the attributes of the data models. This has the
advantage that it is easier to create simple joins, as the condition of the join can be
created by drawing a connection between two attributes. The join shown in Listing 5.1
can be created simply by drawing a connection between the attribute b_id of table_a
and the attribute ID of table_b.

Customer Residence

 ID

 Name

 Residence_ID

 ID

 Street

 Postal_Code

Figure 5.18: Wireframe for Joining Imported Tables

As there are different types of joins as described, this option must also be available
to the user in the interactive flow chart. In order to implement this as intuitively as
possible, the connections are created as left joins by default. If a line is drawn from the
attribute Residence_ID to the attribute ID, as in the example in Figure 5.18, this is
similar to the SQL join Customer LEFT JOIN Residence. The implementation of a
RIGHT JOIN is therefore not required, as in this case the edge must simply be dragged
in the opposite direction. The edge has an arrow at the end so that the join direction
can be clearly recognized, and the user can follow this direction. The INNER JOIN
and OUTER JOIN can be implemented by dragging connections in both directions and
thus displaying an arrow at both ends. If a connection has such a double edge, the user
can select whether it is a INNER or OUTER JOIN when clicking on the edge.

Adding new measures

The addition of new measures should also be available to the user in the low-code
approach. For the design of this interface, the possibilities for adding new measures in
SQL will be looked at first.

It is important to mention that adding new measures is not about adding new columns
to a table, the structure of the imported table remains unchanged. It should only
be possible to add further measures based on the existing columns. So in the SQL

43

5 Concept

environment, it is still only about statements of the data query language (DQL) and
not the data definition language (DDL).

To add such new measures, either aggregation functions or calculations as formulas can
be used in the SELECT clause in SQL. For example, as shown in Listing 5.2, a discount
or the number of all items that exist can be queried.

Listing 5.2: Measures in SQL

SELECT price * discount FROM item;

SELECT count(id) FROM item;

To make these options available in the user interface, a measure can be added to the
interactive flowchart in the data models by clicking the plus at the bottom of a node.
The new measure can then be given a name, regardless of whether it contains a formula
or an aggregation function.

Item

 ID

 Price

 Discount

 Offer_price

 {Price} * {Discount}

Formel Aggr.

New Attribute

Figure 5.19: Wireframe for Adding new Measures

If a formula is selected, as in the example in Figure 5.19, it is possible to specify a
formula. These can be simple calculations, but also complex SQL commands, which
can also occur in every SQL statement in the select clause. When entering formulas,
the user is supported by a formula editor that opens when the formula is entered (see
Figure 5.20).

Create new data views

Thanks to the possibility of joining tables and adding new measures, a user now has the
option of combining data from different source systems and adding new values that are
useful from a business perspective for analyses or similar. In order to actually display
the data in the business logic, it must still be possible to define new views of the data
in order to query the data more specifically as required. For example, if customer data

44

5.3 Graphical User Interface

Formula Editor Attributes

+ - + / ()

ID

Price

Discount

{Price} *

Figure 5.20: Wireframe for the Formula Editor

and building data are in different tables in the technical view, but a department needs
a view of the customer with its buildings, it should be possible to define such a view on
the graphical interface so that all users of the department can only query the combined
view.

Creating a new view on several tables in SQL seems to be complicated for non-IT
specialists at first glance. As can be seen in Listing 5.3, a view must first be created in
which the desired data is added to the view using SELECT statements.

Listing 5.3: Creating a View in SQL

CREATE VIEW customer_data AS SELECT * FROM customer JOIN residence ON

residence_id = id;

As can be seen in the SQL statement, the view is created from a join of two tables.
Since the user has already created the joins via the interface, they only need to select
the data models from which they are to be created and which attributes of the data
models are to be added when creating the new views.

New Data view

 Name

 Customer

 Residence

ID Street Postal_Code

Figure 5.21: Wireframe for Creating new Data Views

45

5 Concept

As can be seen in Figure 5.21, the new view can first be given a name and then the
data models to be added to the view can be selected from a drop-down menu. It is
important that only one data model is selected first (in the example here, Customer).
Then a second input field is displayed, which only has data models for selection that
are directly or indirectly linked to the first table specified. This ensures that the view
can also be realized technically. This interface, combined with the previously presented
ones for joining data models and adding measures, now gives the user the full ability to
translate the technical view in the Core Database into the required business logic using
the low-code view.

5.3.3 Plausibility check

While the configuration of the transformation step in the ETL process fits into one step,
the requirements for the configuration of plausibility checks by a user via the graphical
user interface are more extensive. Although it is also the case here that the user has to
choose from selected implemented plausibility algorithms, (s)he has several options for
the configuration. In order to keep it as simple as possible for the user and to guide
them through the configuration process, a stepper is also used here, which is divided
into the following four steps.

Runner Selection. The first step is to select the algorithm for the plausibility check.
From a technical point of view, this is the runner that is started by the worker as
described in Section 5.2.3 and contains the plausibility check algorithm.

Runner Configuration Data Destination

Adresses Meter readings Consumptions

Figure 5.22: Wireframe for Choosing the Runner

Similar to the stepper for the configuration of the ETL process, the structure of the
next step also depends on the choice of runner.

Runner Configuration. Depending on the runner selected, there are various config-
uration options in this section that are required so that the runner can be executed
correctly later when the specified tables are changed.

46

5.3 Graphical User Interface

Runner Configuration Data Destination

 Meter reading key

 Meter reading unit

Figure 5.23: Wireframe for Setting Runner Configuration

If, for example, imported meter readings are to be checked for plausibility, it may be
necessary to specify the attribute of the data model as meter reading key so that the
runner knows in which field the value is located.

Data. The user must make two configurations in the data step. On the one hand, (s)he
selects the data models for which the created plausibility check is to be executed when
changes are made, and on the other hand, (s)he can specify further data models that
are to be fetched by the plausibility check service and transferred to the runner. This
may be necessary if, for example, a plausibility check requires not only the newly added
data but also data from the past. So that not all data is fetched, the user can also
specify the required attributes and filters for each table, so that, for example, only the
meter readings for one year are fetched from the Core Database.

Runner Configuration Data Destination

Tables where it is executed Required data from Core DB

 meter_readings

 select data model

 meter_readings

Attributes Filter

Figure 5.24: Wireframe for Choosing Data

Destination. The last step is to specify a target table. Due to the structure of the
Core Database and the requirement that no original data is overwritten, the target
table must be specified with the desired structure. This can either be a replica of the
original data model or a completely new one if the user wants to have the plausibilized
data in a separate data model.

47

5 Concept

Runner Configuration Data Destination

 Data model name

 name

Attributes

 data type Primary Key

Figure 5.25: Wireframe for Setting Destination Data Model

As shown in Figure 5.25, the user has the option of giving the new data model a name
and adding any number of attributes to it. This data model is then created once by the
Plausibility service if it does not already exist. Finally, the results are then written to
this table.

5.4 Summary

For the development of the concept, the selection of the appropriate architecture was
considered first. A mix of the microservice architecture and the event-driven architecture
was chosen, as these two offer the best trade-off between scalability, modularity and
performance. Since the microservice architecture forms the basic structure of the system
and the event-driven architecture is used in individual services or for communication
between services, the system was divided into six services. To configure and execute the
process of combining the data from the various source systems, a Data Integration service
was designed that implements the ETL process based on the event-driven architecture.
This service then loads the data into the Core Database service, which stores the data
in a database. Changes in this database are always transferred to the Plausibility
service. This performs the plausibility checks defined by the user. The fourth service is
responsible for translating the data in the Core Database from the technical view into
the business view. The concept of a Semantic Layer is used, which has this mapping as
its task and offers further advantages such as caching. For the synchronization of newly
created tables with the semantic layer data model, there is the Model Synchronizer
service, which receives table changes in a database and translates them into the structure
of the semantic layer data models. The last service is the API-Layer, which manages
the communication between a client and the individual services. In order to offer an
easy-to-use platform in the form of a low-code platform, a Graphical User Interface
was designed in addition to the individual services, which enables a user to operate the
functions of the individual services without in-depth IT knowledge.

48

6 Implementation

As mentioned in Chapter 1, the concept of the low-code platform for versatile data
integration was developed for an implementation at an energy supply company. In
addition to the complete development of the concept, the implementation was also
realised, which is partly discussed in this chapter. It is not about the implementation of
every single service, but rather about individual challenges in the implementation of the
services or the graphical user interface and the possible open source software selection.
How these challenges were solved and which open source tools were used to develop the
system is described in the following Sections. First, the conditions under which the
software was developed are considered in order to better understand certain decisions
in the implementation of the concept.

6.1 Prerequisites

The energy supply company operates several hundred heat generation systems. In order
to analyze their monthly consumption and the efficiency or coefficient of performance
(COP), it needs all the meter readings from the systems. These include electricity
meters, water meters, gas meters, oil levels and much more. As these meter readings are
read by various systems and therefore end up in different source systems, the system
developed is intended to merge and plausibilize the data from the various source systems
and display it to users in the business view. The data required for a detailed analysis
is stored within the company in Excel files, in Microsoft SQL databases and behind a
REST interface.

6.2 Data Integration

For the implementation of the data integration service, the integration of an open source
ETL tool was chosen as already mentioned in Section 5.2.1. This tool must cover all
the functions set out in the concept and, in view of the company’s environment, offer
the option of importing data in the format of the existing source systems.

49

6 Implementation

6.2.1 Software Selection

For the selection of the open source tool for data integration, an extensive Internet
search was first carried out in order to obtain as complete a list as possible of all the
open source ETL tools that could be considered. In the end, a list of twelve ETL tools
was drawn up which, at first glance, were suitable for the requirements set out.

• Airbyte

• Apache NiFi

• CloudQuery

• HevoData

• Mage

• Apache Camel

• CloverDX

• Kafka

• Logstash

• Pentaho

• Singer

• Talend

An initial closer look at the selected tools allows seven to be excluded before a more
specific comparison is made. Although HevoData describes itself as an open source
solution, the source code is not online, which is why this is not an option. CloverDX
does not make its source code available either. Talend and Singer both do not provide
APIs, which is necessary for a connection to the graphical user interface. Although
CloudQuery itself is open source, all but two of the required connectors are not. Apache
Camel is not an ETL tool, but a framework for implementing an ETL. Pentaho is only
available in an outdated version as open source and without good documentation, as
there is now a commercial version.

For a more specific comparison, this leaves the five systems Airbyte, Apache NiFi,
Mage, Kafka and Logstash. All of these systems offer the required scope of connectors
and would therefore be able to extract data from the energy supplier’s existing source
systems. In addition, they all offer an interface for the user to configure the desired
ETL processes. In terms of transformations, all offer the option of implementing custom
transformations. Airbyte also offers a build in normalization of the data, which is
appropriate in the case of the current system, as the Core Database is an SQL database
(an explanation of this decision can be found in Section 6.3). Ultimately, the desired
scope can be implemented with all the other available tools. In this case, the decision
was made in favor of Airbyte, as it offers built-in normalization and a better overall
impression in terms of installation, use and documentation.

6.2.2 Airbyte

Before taking a closer look at the integration of Airbyte into the system, the structure
of Airbyte will be first explained and what possibilities this tool offers to meet the
requirements for data integration. Airbyte essentially consists of five components
[Air24a]:

50

6.2 Data Integration

Airbyte

WebApp Server

Database

Temporal Worker

Source

Destination

store data

create workflow
launches

launches

send API requests

launch task

return job

Figure 6.1: Architecture Overview of Airbyte [Air24a]

Web application. Airbyte already provides a graphical user interface that can be used
to interact with the Airbyte API. This interface can be used to configure connections
between source and target systems. Airbyte distinguishes between sources, destinations
and connections. Sources and destinations each have a pool of connectors from which a
selection can be made and for which the corresponding configurations, such as host or
port, can be stored. Connections are the combination of defined sources and destinations
as well as the selection of the data to be imported.

Server. The Airbyte server offers two REST APIs via which sources, destinations and
connections can be created and tested. One of the REST APIs is the Airbyte API, which
allows users to programmatically control Airbyte, and a Configuration API, which is
designed for communications between different Airbyte components. The latter is far
more powerful.

Database. The Airbyte database is responsible for storing all configurations of sources,
destinations and connections, as well as for storing jobs to be executed.

Temporal Service. The Temporal Service manages the task queue and the workflows.
It therefore represents the scheduler as presented in the concept (see Section 5.2.1).

Worker. The Worker connects to the source system and extracts the data from it. It
then establishes the connection to the target system and imports the data. Depending
on the number of tasks to be executed, there can be any number of workers to execute
them.

A closer look at Airbyte shows that the architecture is quite similar to the structure
of the Data Integration service developed in the concept and therefore fits very well
as a service in the system. By configuring multiple targets, Airbyte can also transfer
data to different target systems. As this exceeds the requirements of the system to be

51

6 Implementation

implemented and makes the configuration more complex, the configuration process can
be simplified using a separate user interface as described in Section 6.6.1.

6.2.3 Integration

The selected ETL tool needs to be integrated into the overall system, which is briefly
discussed in this section.

As can be seen in Figure 6.1, Airbyte consists of several components. In order to run
Airbyte on its own server, an instance must be started for each component. Airbyte relies
on containerization (see Section 2.5). It thus provides a container for each component.
In order to relieve the developer of configurations such as dividing the containers into
individual networks and setting environment variables during integration, Airbyte uses
Docker Compose. Docker Compose is a tool that makes it possible to run applications
consisting of several containers [Doc24]. The various containers can be defined together
with their configurations, such as networks or environment variables, in a YAML file,
which is then used as the basis for creating and managing the containers.

To start an instance of Airbyte, it is simply necessary to copy the YAML file to the
server and execute the docker compose up -d command. Airbyte can then be accessed
via the port specified in the YAML file. As Airbyte’s own web interface is also a separate
container and is not required in this implementation due to its own graphical user
interface, the container webapp can be removed from the YAML file. This means that
only the required Airbyte services are started.

6.3 Core Database

6.3.1 Software Selection

In order to find a suitable selection of software for data storage, another extensive
Internet search was conducted. The following eight software solutions were considered
as potential technology for the Core Database:

• Apache Cassandra

• ArangoDB

• CouchDB

• MariaDB/MySQL

• PostgreSQL

• SQLite

• Apache Hadoop

• Greenplum

52

6.3 Core Database

The database systems CouchDB, ArangoDB and Apache Cassandra are not suitable for
the development of the required system, as these are special NoSQL databases that only
allow very limited data analysis options. Their strength lies in the storage of very large
volumes (TB, PB) of unstructured data. Since the energy supplier’s data is available in
Excel tables or SQL databases (which means they are already structured) and has a
volume of MB to GB, relational databases offer the greater advantage here.

Some SQL databases can also be excluded from a more specific comparison. SQLite
is a very lightweight database that is mainly used in embedded systems and mobile
applications [Bho15]. SQLite is an embedded database that does not run as a standalone
process but is deployed within an application [All10]. Due to the goal of being a
lightweight database, SQLite does not offer the usual scope of other SQL databases
such as stored procedures. For these reasons, SQLite is also not the best choice for
a database for big data that is to be provided as a separate service. Greenplum is
used much less than PostgreSQL and MariaDB/MySQL [DE24] and therefore has a
correspondingly smaller community. This offers significant disadvantages in terms of
security and further development of the software.

Compared to PostgreSQL and MariaDB/MySQL, the former database is more perfor-
mant with large amounts of data and more complex SQL queries. PostgreSQL can also
be a very good data warehouse for executing complex report queries for large amounts
of data [EDB24].

Apache Hadoop, unlike PostgreSQL, is not a database system, but a framework that
was developed for processing big data (TB, PB). The data is not stored in an SQL
database, but in the distributed file system HDFS, which can also store unstructured
data. PostgreSQL, on the other hand, is a database system that is used in many areas
to store large amounts of data. It is also used, for example, for data storage (MB,
GB) on platforms with several million users per day. It offers a very wide range of
functions and is easily scalable. Since the installation and operation of PostgreSQL is
much simpler and since the available data of the municipal utilities is well-structured
and not so extensive, the use of PostgreSQL is best suited as a database management
system for the Core Database.

53

6 Implementation

6.4 Semantic Layer

6.4.1 Software Selection

The selection of suitable open source software for the semantic layer was based on
the software list of the topic ‘semantic-layer’ on GitHub [Git24a], which is a developer
platfrom to manage code.

The size of the community of the individual software is important for the software
selection, as a larger community is an indicator that the software is better maintained.
The community size can be recognized in GitHub via the stars, as a user gives a star to
a software if (s)he follows it. Since the third software in this list already falls below 500
stars when sorting by the most stars, only the first three were shortlisted.

The first software is cubejs with approx. 17,500 stars. cubejs is a semantic layer that
was developed for connecting to SQL-capable data sources such as Postgres, Google
BigQuery and many more [Cub24]. cubejs offers the possibility to create and change
data models and views both statically and dynamically and thus to create any view of
the connected data source.

The second software is Metricflow from the company dbt. Metricflow is a Python library
for the implementation of a semantic layer and is not a complete open source software.
Dbt also offers a complete software as a semantic layer, but this is not open source and
is therefore not considered further in this selection [Dbt24].

The last software in the list is synmetrix. With 491 stars, this is already well behind
cubejs in terms of the size of the community. Since Synmetrix itself uses cubejs for
flexible data modeling, using this software instead of cubejs offers no advantages in
terms of data modeling [Syn24]. And since a separate user interface is developed with
the low-code platform, the use of this software can also be ruled out.

The open source software cubejs is used here to implement the semantic layer. The
following section describes how the dynamic data modeling was implemented with the
help of cubejs.

6.4.2 Dynamic Modeling

Data models

In cubejs, data models based on tables in an SQL database are referred to as cubes.
Such cubes can be created statically or dynamically. For static creation, a YAML file

54

6.4 Semantic Layer

must be created for each required cube and stored in the correct file path within cubejs.
From these YAML files, cubejs then creates and compiles the data models, which can
then be queried via the API.

Before the implementation of dynamic data modeling with the help of cubejs is considered,
the structure of a YAML file for the creation of static cubes is first considered in order
to gain a better understanding of the cubes.

Listing 6.1: Creating a Cube

cubes:

- name: customer

sql_table: customer

To create a cube, it requires a name that can be freely chosen and the name of the
referenced SQL table. These can be specified in the YAML file as shown in Listing 6.2.

However, simply creating a cube does not make it possible to query the data. To be
able to access the data in the created table, a so-called dimension must be added to the
cube for each column of the SQL table that is needed. Again, it is necessary to specify a
name that can be freely chosen. A dimension can be of four different data types. These
are: time, string, number, boolean and geo. Depending on the selected data type, the
name of the SQL column can simply be specified in the sql field or, when using the
string type, a concatenation of other text columns can also be specified. There are also
other options, such as specifying whether the dimension is a primary key, etc.,

Listing 6.2: Adding Columns

cubes:

...

dimensions:

- name: street

sql: street

type: string

In addition to the dimensions, a cube can also contain one or more measures. These
also consist of a name and a type. These types are either an aggregation function from
SQL such as count, max etc. or a number or string. For the former, the column of
the table on which the function is executed is specified in the sql field, whereas for the
latter two formulas or entire SQL statements can be specified. The specified formulas
or SQL statements must then result in either a string or a number, depending on the
selected type. This makes it possible to add measures that calculate a new value from
two numbers, or a switch case to display different strings under certain conditions.

55

6 Implementation

Listing 6.3: Adding Measures

cubes:

...

measures:

- name: count

sql: id

type: count

Finally, cubes can have joins, which are relationships to other cubes. These relationships
are specified directly in the cube for the reason that cubejs only implements the LEFT
JOIN, so the cube containing the join is the left set and the cube specified in it is the
right set. If a RIGHT JOIN is to be implemented, the JOIN can simply be specified
in the second cube. Cube does not offer the implementation of INNER and OUTER
JOINs directly when defining the join, but via small detours. For example, filters that
filter out NULL values can be specified for an INNER JOIN. To achieve an OUTER
JOIN, this must be specified directly as an SQL statement in a cube.

Listing 6.4: Adding Joins

cubes:

...

joins:

- name: line_items

sql: "{CUBE}.id = {line_items.order_id}"

relationship: many_to_one

A condition must also be specified in the sql field; this is similar to the condition from
the on clause of a SQL join statement. The cardinality of the relation is also specified.
There are the relationships one-to-one, one-to-many or many-to-one.

Views

Alongside the definition of cubes with their dimensions, measures and joins, several
cubes can also be combined into a new view in the YAML file. To do this, a view and
all other components can be given a name under which the content of the view can
be queried. In addition, several cubes can be specified. These are not specified by
entering the name of the cubes but by means of a join path. The view is thus based on
a cube whose join path is then simply the name of the cube. All further cubes are then
specified by the path from the base cube to the desired one.

The example in Listing 6.5 shows how a view of the two cubes base_cube and second_cube
is created. Since the base_cube has a join to inter_cube and the inter_cube has a join

56

6.4 Semantic Layer

to second_cube, the path must be specified accordingly in the order so that the view
can be defined.

Listing 6.5: Adding Cubes to View

views:

- name: new_view

cubes:

- join_path: base_cube

cubes:

- join_path: base_cube.inter_cube.second_cube

The example in Listing 6.5 shows how a view of the two cubes base_cube and second_cube
is created. Since the base_cube has a join to inter_cube and the inter_cube has a join
to second_cube, the path must be specified accordingly in the order so that the view
can be defined.

When defining a view, the dimensions and measures of the individual cubes to be
included in the view can also be specified in addition to the join path. These can be
specified under the include field.

Listing 6.6: Adding Dimensions to View

views:

...

cubes:

- join_path: base_cube

includes:

- id

- name

Dynamic data models

By creating the YAML files described above, the data models and views can be created
statically. In order to fulfill the requirement U7, these must be created dynamically.
Although cubejs does not provide the ability to create and model data models via an
interface, it is possible to load data via a Python script and dynamically create these
YAML files using the Jinja template engine. This offers the possibility to write python
like code by using special placeholders to create documents. In this case, these are
YAML files.

Cube provides a python package from which the class TemplateContext can be imported.
This offers the option of registering a function using the function add_function or the

57

6 Implementation

decorator template.function so that it can be called from a Jinja template. As can be
seen in Listing 6.7, a function is implemented that loads the data from the database
specified in Section 6.4.2 via a http client so that this data is available in the Jinja
template.

Listing 6.7: Load Data for Dynamic Cube Creation

from cube import TemplateContext

template = TemplateContext()

client = ApiClient()

@template.function('load_data')

def load_data():

return client.load_data()

Instead of creating a YAML file for each cube, a YAML file with the name cubes can
now be created, which then renders the various cube files as in Listing 6.8. Thanks
to the Jinja template engine. To do this, the data that is available by registering the
load_data function in the template is first stored in the variable data in order to then
create a cube for all cubes in data using a for loop.

Listing 6.8: Render YAML File via Jinja Template Engine

{%- set data = load_data()%}

cubes:

{%- for cube in data["cubes"] %}

- name: {{ cube.name }}

By loading the data, it is now possible to create the data models dynamically, but there
is still a problem with the execution of the Python script. Cube always executes it when
the entire data model is recompiled. To trigger this process, it is possible to update
the schema version. To do this, Cube offers the option of implementing a function in a
JavaScript file that returns the schema version. This function is executed with every
request to Cube and if the returned schema version does not match the previous version,
the data model is recompiled. In order to recompile the data model when changes are
made via the API, the schema version must also be updated with each change. For this
reason, the schema version is also saved in the service database.

Listing 6.9 shows an example of how the function is implemented in the file cube.js. The
function queryVersion makes a query to the database containing the schema version. As
this is updated with every change to the data models. The next time Cubejs is queried,
the latest data model is available to the user.

58

6.4 Semantic Layer

Listing 6.9: Implement Schema Version for Cube

module.exports = {

schemaVersion: () => {

try {

return await queryVersion();

} catch (e) {

throw Error(`Could not get schema version: ${e}`)
}

}

};

Database

Since cubejs itself does not offer the possibility to create or customize data models via
an API, but only to create them dynamically by loading data, it requires an additional
database in addition to the cubejs internal database, which provides the information on
the data models and makes it queryable for cubejs.

When developing the schema of this database, the structure of the data models of cubejs
could simply be adopted, but it requires an adapted structure to support graphical
modeling via the user interface. For this reason, this section deals with the structure of
the schema, which is referenced again in Section 6.6.2 when implementing the graphical
data modeling.

Cube

Dimension Measure

Join

includes 1

m

has
Source

has
Target

includes1

m

m

1 1

mhas
Source

has
Target

m
m

1 1

Figure 6.2: Database Schema for Storing Dynamic Data Models

As can be seen in Figure 6.2, a cube can have several dimensions and measures. A join,
on the other hand, always refers to exactly one source cube and one target cube, as well
as a dimension of the source cube, which is the first part of the join condition, and a
dimension of the target cube, which is the second part of the join condition.

59

6 Implementation

Besides the schema for the cubes, it also requires one for storing the views created by
the user. This database schema is similar to the structure of the views in the YAML
file, as a less complex interface for creating views was designed here as described in
Section 5.3.2 and therefore no additional information and relationships are required.

In order for the Model Synchronizer and the user to be able to create data models, an
interface to the database is required. This is not provided by the service itself but by
the API gateway whose design was presented in Section 5.2.6.

6.5 Model Synchronizer

6.5.1 Database Changes

When integrating data from the ETL tool, new tables are created in the Core Database.
A data model must now be created for these in cubejs as described in the previous
section. To avoid the user having to do this via the interface, the Model Synchronizer was
introduced in Chapter 5 as a concept that receives data changes via triggers implemented
in the Core Database and transfoms them to data models of the database schema of
the semantic layer. Since the transfer of changes from the Core Database to the Model
Synchronizer depends on the choice of software used and is therefore not specified in
more detail in the concept, the communication used in the implementation of the Model
Synchronizer is examined in more detail here.

For the communication between the Core Database and the Model Synchronizer there
are two approaches. The first is that functions written in PostgreSQL can request a
REST-endpoint implemented in the Model Synchronizer via HTTP with the changed
data. The second is to use a message broker through which the Core Database can
publish changes that the Model Synchronizer then consumes. By using PostgreSQL
as the database management system, the second option is easier to implement, as
PostgreSQL provides built-in functions for communication between postgresql clients
via channel using the NOTIFY/LISTEN mechanism. It would also be possible to
write PostgreSQL functions using for example the PL/Python procedural language to
request REST-endpoints, but this would require implementing an endpoint in the Model
Synchronizer and the request in the Core Database, which would result in significantly
more development effort than communication using the NOTIFY/LISTEN mechanism.

60

6.6 Graphical User Interface

6.5.2 Realization

The three components of the Model Synchronizer designed in Section 5.2.5 were all devel-
oped in the Typescript programming language, as this was the preferred programming
language of the developers. To connect the DB Listener to the PostgreSQL message
channel, it requires the implementation of an SQL client, which then connects to the
PostgreSQL instance. For Typescript there is the library pg, with the help of which
an SQL client can be created, which is done in Listing 6.10 in method getSQLClient.
Once this client has been created, an SQL statement can be executed on the connected
database using the query function. In this case, LISTEN is used to listen to the channel
syncdatamodel.

Listing 6.10: Consuming Messages from the Postgres Channel

const client = getSQLClient();

await client.connect();

client.query("LISTEN syncdatamodel")

To finally process the messages that are published on the specified channel, the on
function can be called, which uses the notification key and a function that is always
executed when a message is consumed. As can be seen in Listing 6.11, the message
content is first parsed into the correct type script object. It is then transformed into
the structure of the cubejs API and finally created using an API request.

Listing 6.11: Execution of the Data Model Transformation

client.on("notification", async (msg) => {

const dataModel = parseDatamodel(msg.paylaod);

const transformedDataModel = transformDataModel(dataModel);

await createCubeWithDimension(transformedDataModel);

})

6.6 Graphical User Interface

To implement the graphical user interface, the decision was made to implement a web
application using the React framework in the programming language Typescript. React is
the second most widely used framework for the development of web applications [Ove23].
It follows the concept of developing individual reusable components for more efficient

61

6 Implementation

development. There is also a large number of libraries that facilitate the development
of components in React. Typescript is a programming language based on JavaScript.
Typescript extends JavaScript with additional language features, such as a static type
checker or interfaces, which are explained in more detail in the following Section [Har20].
The choice of technology was made with regard to the skills and preferences of the
developers.

6.6.1 Data Integration

The challenge in implementing the Data Integration service is the dynamic loading
of configuration forms that depend on the type of source system as well as an easy
extensibility of new source systems. If, for example, the energy supplier wants to
integrate a PostreSQL database, it should be easy for a developer to develop the code for
the configuration via the frontend. Since Airbyte provides almost 100 source connectors
[Air24c], it is too much effort and unnecessary to provide all of them via the user
interface, but rather on demand. Although Airbyte also offers its own interface, the
system is designed to be available as a standardized interface for all functions and not
as a system consisting of several user interfaces. In addition, functions and settings
offered by Airbyte can be abstracted away, such as the definition of multiple target
systems. As there is only one target system in the developed system, these settings can
be configured once during deployment and configuration is made one step easier for the
user by eliminating this option.

To create an environment for developers that makes it easier to provide new connectors
in the user interface, it is first necessary to see what options Airbyte provides to define
connections to source systems. As mentioned in Section 6.2.2, Airbyte also offers a
REST API with the Airbyte API for configuring new source systems, so-called sources.
New sources are created using a POST request via the /v1/sources endpoint [Air24b].
A user-defined name, the ID of the Airbyte connector to be used and a JSON object of
the connector-specific configuration can then be specified in its request body.

As the user should not be dependent on the structure of the request body when designing
the input form, the challenge when designing the code is to give the developer the
possibility to freely develop the input form and add any possible airbyte source without
re-implementing the actual request.

The basis for meeting these challenges in Typescript are generic types and interfaces.
With interfaces, typescript offers the possibility of defining structures — a kind of
blueprint — of objects. Thanks to the interfaces, the structure of an input field can be
defined, which the developer then only has to implement. Because of the predefined

62

6.6 Graphical User Interface

structure, however, the developer does not have to worry about rendering the fields, as
this is done independently of the implementation by the predefined structure.

Listing 6.12: Example of Rendering an Input Field

interface InputForm {

component:

props: {

title: string;

defaultValue: string;

}

}

export const ParentNode: React.FC = (props) => {

...

<input.component title={props.title} value={props.defaultValue} />

}

Listing 6.12 shows an excerpt from the interface of the input field and how it is rendered
independently of an actual object.

Apart from interfaces, generic types are used. Generic types are placeholders that are
used to enforce a type restriction at certain points [Che19]. For example, generic types
can be used in the definition of interfaces in order to have a placeholder for the type
of attribute. The actual type is then only specified when an object is created by the
interface.

Listing 6.13: Example for the Use of Generic Types

interface ActuelType {

attribute: string

}

interface Generic<T> {

uncertainType: T

}

const obj: Generic<ActuelType> = {

attribute: "value"

}

For a better understanding, two interfaces are defined in Listing 6.13, the second of
which has an attribute with a generic type. When creating an object with the second
type, the first type is then passed in angle brackets, so that the typecasting knows which
attributes the object must contain.

63

6 Implementation

With this knowledge, an interface can now be created on the basis of which the rendering
of the input fields and the request to Airbyte can be implemented once, so that the
developer who wants to add another source only has to create an object of the interface
and does not have to worry about any further implementation.

The interface, which can be seen in Listing 6.14, initially consists of the sourceId and
the name, both must be included in the request body to Airbyte. It also contains an
icon, which is displayed on the interface for better user experience, and a list of inputs,
which the developer can use to create any input form, as shown in Listing 6.12. Finally,
there are two functions that need to be implemented. Since the input form can be freely
designed and therefore does not correspond to the structure of the request body of the
configuration field of the Airbyte API, the values in the input form must be mapped
to the structure of the request body. This is where the generic types come up. The
function receives a list of all values of the input fields and returns the generic type
SourceData. is the interface that corresponds to the structure of the configuration field
in the request body of the Airbyte API. Since this differs depending on the source, as
already mentioned, the developer must first create this interface and can then pass
it as a type when creating the object from the interface CreateSource. As configured
connectors can also be edited via the user interface, the function must exist in reverse
order so that the queried configuration from airbyte can be mapped into the structure
of the input fields.

Listing 6.14: Interface for Creating New Sources

export interface CreateSource<SourceData> {

sourceId: string;

name: string;

icon: React.FC<SvgIconProps>;

inputs: InputForm[];

mapping?: (obj: any[]) => SourceData;

reverseMapping: (source: SourceData) => any[];

}

If a developer now wants to add PostgreSQL as a new possible source system, for
example, (s)he must check in the Airbyte documentation for the structure of the request
body and create an equivalent interface. Then the developer can create a list of objects
of the interface InputForm to define the input form and finally, the developer creates an
object of the interface CreateSource which is then used to render the input form and
make the requests to Airbyte. The effort is therefore manageable, and the system can
be easily expanded to include additional sources.

64

6.6 Graphical User Interface

6.6.2 Data Modeling

Software Selection

As described in the concept, interactive data modeling is implemented using a flowchart.
Following the approach of using open source software to fulfill the requirements B1 and
B2, an open source React library must first be selected to implement the flowchart.

To get a selection of possible libraries, a search was conducted on the developer platform
GitHub. The search resulted in a selection of three flowchart libraries that offer the
required scope and are written in Typescript for React. To make a selection, a table
(see table 6.1) was created that lists the community size (stars), the last activity (last
commit) and the number of contributors for all libraries.

Name Stars Last Commit Contributors
React Flow Chart 1,500 28-06-2020 19
REAFLOW 2000 02-08-2024 26
React Flow 23,100 31-07-2024 91

Table 6.1: Overview of React Flowchart Libraries (Accessed: 04-08-2024)

React Flow Chart has the smallest community in comparison and the last activity was
four years ago. As a result, this library should not be used, as the further development
and security of the software cannot be guaranteed. REAFLOW, on the other hand,
has an active community, but with 2,000 stars it is significantly smaller than React
Flow. Also, while both libraries provide the desired functionality, React Flow has
significantly more features. For this reason, the decision was made to use React Flow
for the implementation.

Realization

The concept for connecting data models described in Section 5.3.2 shows a flowchart
with nested nodes. The representation of the nodes is different, as the inner nodes,
which represent the attributes, have a connector at both ends for connecting attributes.
To display nodes, React Flow offers the option of creating custom nodes. For this reason,
two types of nodes have been implemented: A DataModelNode and a AttributeNode.

To add a custom node, a component must first be created in React, which receives all
the node’s data as properties (see Listing 6.15). The node can then be designed within
the HTML div container. If the node has a title, the title can be displayed in the node
using the data received.

65

6 Implementation

Listing 6.15: Creating a Custom Node

export const AttributeNode: React.FC<NodeProps> = ({ data }) => {

return (

<div>

{data.title}

...

</div>

)

}

Unlike the DataModelNode, the AttributeNode has a connector at each end. To display
these, React Flow provides the component Handle. This can then be implemented
within a node by passing properties such as position, type and ID to the component.
An example can be seen in Listing 6.16.

Listing 6.16: Add Connectors to Custom Node

export const AttributeNode: React.FC<NodeProps> = ({ data }) => {

return (

<div>

<Handle

type="target"

position={Position.Left}

id="handle-left"

/>

...

<Handle

type="source"

position={Position.Right}

id="handle-right"

/>

</div>

)

}

To render the nodes in the flowchart of React Flow, an object of type Node must be
created for each node that is to be rendered and passed to the flowchart component as
a list. Such an object has a unique ID, a type (name of the custom node specified), a
position and the required data that is passed to the node for rendering. This list of nodes
can then be passed to the component ReactFlow (see Figure 6.18), which then renders
the flow diagram with the nodes at their specified position. To display the nodes in a
nested manner, a parentId can also be specified for a node in addition to the properties
mentioned, which then corresponds to the ID of the associated DataModelNode.

Similar to the creation of nodes, edges can also be created by creating a list of objects
of the type Edge. An edge also contains a unique ID as well as the ID of the source

66

6.6 Graphical User Interface

node under the attribute source and the ID of the target node under target. This list is
also passed to the ReactFlow component (see Figure 6.18) and thus the edges between
the nodes are rendered.

Since the data models are stored in the database of the semantic layer as shown in
Figure 6.2, it is now possible to query the data via the API layer and create the lists
of nodes and edges from it. Each entry in the table Cube becomes a DataModelNode
and for each associated dimension a AttributeNode with the ID of the cube as parentId.
The list of edges is created from the entries in the Join table. As a join always has
exactly one source and one target dimension, the object of an edge can be created easily.
Listing 6.17 shows how the required nodes for the flow diagram components are created
from the loaded cubes from the semantic layer.

Listing 6.17: Create Node Objects of Cubes

const nodes = cubes.forEach((cube) => {

id: cube.id,

data: { label: cube.title },

position: getPosition(cube.id),

...

})

To create new joins between data, a function can be passed to the ReactFlow component,
which is always called as soon as a connection is created between two nodes. This
function receives the ID of the source as well as that of the target as parameters, whereby
a new entry can then be created in the Join table with the appropriate dimensions via
the API layer in the database (see Listing 6.18).

Listing 6.18: Create New Join via Flow Chart

...

const onConnect = (conn: Connection) => {

createJoin(conn.sourceId, conn.targetId);

);

return (

<ReactFlow

nodes={nodes}

edges={edges}

onConnect={onConnect}

...

/>

)

67

7 Evaluation

In order to fulfill the objective of building an individual, easy-to-use platform for versatile
data integration for a company with challenging requirements, the concept developed in
Chapter 5 is evaluated as proposed by Kazman et al. [Kaz96] based on scenarios.

For this purpose, the first step is to develop scenarios for both the user and the
developer that describe the expected use of the designed system from the perspective
of the developer and the end user. In the second step, the scenario evaluations are
performed. For this purpose, the scenarios are classified as direct or indirect. Direct
means that the system fulfills the described scenario, whereas indirect means that an
adaptation of the concept is required to execute the desired scenario. If a scenario is
classified as indirect, the required changes that need to be made to the components of
the concept are also noted. The so-called scenario interactions are then identified in
the third step. A scenario interaction exists when two scenarios classified as indirect
require changes to the same component. Finally, the system is evaluated on the basis of
the scenarios classified as indirect and the identified scenario interactions.

7.1 Develop Scenarios

The scenarios were developed by an employee of the energy supplier. The roles considered
were that of a user who uses the graphical user interface and a developer of the system.

User:

1. Add a new source system. Add a new source system that is based on an existing
connector. For example, a new PostgreSQL database is to be added.

2. Add a new source system type. Add a new source system from a source system
type, which is not displayed in the selection of source system types.

3. One-click data importing. Triggering the ETL process by clicking on a button.

4. Periodic import of data. Configuring regular automated data imports from the
source systems.

69

7 Evaluation

5. Transformation of imported data. Execution of all required transformations during
the ETL process.

6. Plausibility of data. Execute all required plausibility checks of incorrect data.

7. Selection of the data to be imported. Selection of the data records to be imported
and the individual fields contained in the data record.

8. Adding and editing data. Manually add data in addition to the imported data and
edit this and the imported data.

9. Creating a business view of the data. Transferring the imported data from the
technical view to the business view.

10. Create relationships between different data records. Create relationships between
data from the same and different sources.

11. Configuration of the extraction mechanism. Specification of the extraction mecha-
nism, whether all data should be overwritten on re-import or only appended.

12. Creation of aggragations on data sets. Possibility to apply aggregation functions
to the imported data records.

Developer:

13. Adding a new source connector. Possibility to easily add new required connectors.

14. Use different database technology. Possibility to change the database technology if,
for example, the data storage requirements change.

15. Use different semantic layer. If the semantic layer no longer meets all the desired
requirements, it should be possible to replace it.

16. Provide custom plausibility algorithm. Extension of the system with all necessary
plausibility algorithms for the plausibility check

17. Provide custom transform algorithm. Extension of the system with all necessary
transformation for ETL-Prozess.

18. Replacing the ETL tool. The ETL tool used should be replaceable.

19. Restrict user access to the services. Ability to provide an endpoint that only
allows access to the functionalities of the services that the user should access.

70

7.2 Perform Scenario Evaluations

7.2 Perform Scenario Evaluations

When classifying the scenarios, 5 out of 19 were classified as indirect. In other words,
74% of the scenarios can be implemented directly by a user or developer. The remaining
26% require changes to the concept. The changes are explained in more detail in the
table 7.1.

Scenario Description Changes
2 Add a new source sys-

tem type
To add a new source type as a user, the
Graphical User Interface must be mod-
ified, and the Data Integration service
must also be modified.

5 Transformation of im-
ported data

If the ETL tool does not provide the required
transformation, both the Graphical User
Interface and the Data Integration must
be changed.

6 Plausibility of data Similar to a user’s restrictions on transfor-
mations, if the desired algorithm is not pro-
vided, changes must be made to the plau-
sibility service and the Graphical User
Interface.

14 Use different database
technology

When changing the database technology,
changes will have to be made to the Model
Synchronizer services, since they were de-
signed specifically to map the data struc-
tures between the database and the seman-
tic layer.

15 Use different semantic
layer

The changes to the Model Synchronizer
must be made for the same reason when re-
placing the semantic layer as when changing
the database technology.

Table 7.1: Scenario Evaluations

7.3 Reveal Scenario Interactions

The evaluation of the scenarios results in the number of interactions per component
shown in table 7.2.

Component number of changes
Graphical User Interface 2
Data Integration 1
Model Synchronizer 1

Table 7.2: Scenario Interactions per Component

71

7 Evaluation

Three of the seven components proposed in the concept have interactions. The higher
the interactions, the worse the functionality of the component is isolated and the more
likely the component will lead to problems in the end product [Kaz96]. By specifying the
interactions, the components that require particular attention in the overall evaluation
stand out.

7.4 Overall Evaluation

Through the evaluation of the scenarios performed in Section 7.2 and the following
specified scenario interactions, the developed concept can be evaluated in the overall
evaluation. The developed concepts can perform the majority of the set up scenarios
without fundamental changes to the concept. However, when calculating the scenario
interactions, three components of the concept were identified that require conceptual
changes so that all scenarios can be fulfilled.

Taking a closer look at the scenario interactions, it can be seen that the graphical user
interface has two interactions, whereas the remaining two components have only one
interaction, which in turn indicates a lower risk of the component causing problems in
the final system.

The graphical user interface shows restrictions regarding scenarios that are to be executed
by a user. The first is that a user cannot use the interface to specify a new source of a
source type that has not already been implemented in the user interface. As the ETL
tool should be selected so that it offers connectors to all common data sources, all of
these should also be available in the user interface. This means that there are only
limitations in cases where very specific source systems are to be connected. The last two
limitations are revealed in the transformation and plausibility check of imported data.
Here, the user only has the option of selecting already implemented transformations and
plausibility checks; if new algorithms are required, the user interface must be adapted
so that these can also be configured graphically.

The limitations of the Data Integration service result from the adding of new sources
with non-implemented source types and the need for non-implemented transformation
algorithms. The former is a limitation that cannot be eliminated, as it is hardly possible
to implement all types of source systems and their protocols. In addition, new protocols
and source systems may be developed in the future, in which case the Data Integration
inevitably has a limitation and must be extended. To counteract the second limitation,
it should be possible to provide all possible transformations in the Data Integration
service, but since the transformations are strongly dependent on the domain and the
data, this is also a limitation that must be dealt with.

72

7.4 Overall Evaluation

The last component that has limitations with regard to the developed scenarios is the
model synchronizer. As this accepts data from the Core Database, transforms it and
writes it to the semantic layer, it must be adapted both when changing the database
technology and when changing the semantic layer, as the mappings between the data
structures depend on these. Similar to the restriction of the source system types of an
ETL tool, it is not possible to implement all possible mappings for current and future
database technologies and semantic layers.

73

8 Conclusion

8.1 Discussion

In order to answer the research question posed at the beginning, requirements were first
derived from related literature and from a specification sheet provided by an energy
supplier. Based on these requirements, the approach chosen in the concept was to
develop a system based on open source components in order to implement the concept in
a cost-effective and time-saving manner. The microservice architecture style was chosen
as the basis for the software architecture style, whereby the event-driven architecture
style was used in some cases for communication within and between the services. The
system was divided into six services with a view to the loosest possible coupling between
the services and the possibility of implementing the services using open source software.
To provide the easy-to-use platform required by the research question, a graphical user
interface was designed as a low-code platform. Since the system was implemented for
the energy supplier as part of this work, parts of the implementation and the selection
of open source tools were presented after the conceptualization. Finally, the created
concept was evaluated based on scenarios to show that the research question can be
answered with this concept.

As the evaluation reveals, the concept fulfills the set scenarios with the exception of a
few limitations (explained in more detail in the following Section). The system makes
it possible to use the easy-to-use low-code platform to combine and model data from
various sources as a user who is not a developer. In addition, the structure offers
the possibility to implement parts using open source tools, which meets the business
requirements B1 and B2. Since the system was not only developed on the basis of the
requirements of a company, but systems from other domains were also considered as
well as the general requirements for a data integration platform, the research question
can be answered with the concept not only for the energy sector, but also for other
areas such as medicine or digital urban planning. By fulfilling the requirement S2 and
the approach of implementing shared services itself, the challenging requirements of
each company can be addressed when implementing the concept, which means that the
concept also answers the last part of the research question.

75

8 Conclusion

8.2 Limitations and Future Research

As already discussed in Section 7.4, the concept has limitations with regard to the
three components Graphical User Interface, Data Integration and Model Synchronizer.
The greatest limitations of the concept are due to the Graphical User Interface. This
is limited in that it is not possible for users to add new source system types, define
new transformations and new plausibilitiy checks via the low-code platform without
development effort. In all three cases, the concept of the graphical user interface could
be extended in such a way that it is possible to eliminate these current limitations
via the interface in the low-code approach. With regard to the creation of new source
system types, the system only needs to make it possible for the user to define the settings
via the interface that are currently still defined by the implementation of the generic
interface described in Section 6.6.1. Further research is required into the conception of
a low-code interface for the creation of new transformations and plausibility checks, as
this implementation is far more complicated. In future work, a solution can be found
to define transformation and plausibilization algorithms as well as possible without
developing actual code.

76

Bibliography

[Air24a] Airbyte: Architecture overview (2024), URL https://

docs.airbyte.com/understanding-airbyte/high-level-

view, accessed: 19-07-2024
[Air24b] Airbyte: Create a source (2024), URL https://

reference.airbyte.com/reference/createsource, accessed:
10-08-2024

[Air24c] Airbyte: Hundreds of connectorsout-of-the-box (2024), URL https://

airbyte.com/connectors?connector-type=Sources, accessed:
21-07-2024

[All10] Allen, Grant: The Definitive Guide to SQLite, Apress L. P., Berkeley, CA,
2nd edn. (2010), description based on publisher supplied metadata and
other sources.

[Alo17] Alotaibi, Saad B.: ETDC: An Efficient Technique to Cleanse Data in the
Data Warehouse, ETL, in: Proceedings of the International Conference on
Advances in Image Processing, ICAIP 2017, ACM

[AtS24] AtScale: What is a Semantic Layer? (2024), URL https://

www.atscale.com/glossary/semantic-layer/, accessed: 15-07-
2024

[Bau13] Bauer, Andreas: Data-Warehouse-Systeme, dpunkt.verlag, Heidelberg, 4th
edn. (2013)

[Bet22] BetterCloud: Average number of software as a service (SaaS)
applications used by organizations worldwide from 2015 to 2022
(2022), URL https://www.statista.com/statistics/1233538/

average-number-saas-apps-yearly/, accessed: 01-08-2024
[Bho15] Bhosale, Satish Tanaji; Patil, Tejaswini and Patil, Pooja Patil: SQLite:

Light Database System. International Journal of Computer Science and
Mobile Computing (2015), vol. 4(4):pp. 882 – 885

[Boc21] Bock, Alexander C. and Frank, Ulrich: Low-Code Platform. Business
Information Systems Engineering (2021), vol. 63(6):pp. 733–740

[Bru10] Bruns, Ralf and Dunkel, Jürgen: Event-Driven Architecture: Soft-
warearchitektur für ereignisgesteuerte Geschäftsprozesse, Microservices,
Springer Berlin Heidelberg (2010)

77

https://docs.airbyte.com/understanding-airbyte/high-level-view
https://docs.airbyte.com/understanding-airbyte/high-level-view
https://docs.airbyte.com/understanding-airbyte/high-level-view
https://reference.airbyte.com/reference/createsource
https://reference.airbyte.com/reference/createsource
https://airbyte.com/connectors?connector-type=Sources
https://airbyte.com/connectors?connector-type=Sources
https://www.atscale.com/glossary/semantic-layer/
https://www.atscale.com/glossary/semantic-layer/
https://www.statista.com/statistics/1233538/average-number-saas-apps-yearly/
https://www.statista.com/statistics/1233538/average-number-saas-apps-yearly/

Bibliography

[BSI24] BSI: Open Source Software und Vorabversionen von Betriebssystemen (2024),
URL https://www.bsi.bund.de/DE/Themen/Verbraucherinnen-

und-Verbraucher, accessed: 10-08-2024
[Che19] Cherny, Boris: Programming TypeScript, O’Reilly, Beijing, 1st edn. (2019)
[Che22] Chen, Lili; Di, Yingqi and Zhang, Lele: Implementation of Cloud-based

Urban Rail Big Data Platform, in: The 6th International Conference on
Computer Science and Application Engineering, CSAE 2022, ACM

[Cub24] Cube Dev, Inc.: Cube Website (2024), URL https://cube.dev/, ac-
cessed: 09-07-2024

[Dat23] Datanyze: Leading containerization technologies market share world-
wide in 2023. Statista (2023), URL https://www.statista.com/

statistics/1256245/containerization-technologies-

software-market-share/

[Dav16] Davidson, Louis and Moss, Jessica: Pro SQL Server Relational Database
Design and Implementation, Apress (2016)

[Dbt24] Dbt: About MetricFlow (2024), URL https://docs.getdbt.com/docs/

build/about-metricflow, accessed: 09-07-2024
[DE24] DB-Engines: Vergleich der Systemeigenschaften Greenplum vs. Post-

greSQL (2024), URL https://db-engines.com/de/system/

Greenplum;PostgreSQL, accessed: 19-07-2024
[Des24] Destatis, Statistisches Bundesamt: Statistischer Bericht - Daten

zur Energiepreisentwicklung - Januar 2024 (2024), URL
https://www.destatis.de/DE/Themen/Wirtschaft/Preise/

Publikationen/Energiepreise/statistischer-bericht-

energiepreisentwicklung-5619001241015.html, accessed:
01-08-2024

[Doc24] Docker Inc: Docker Compose Website (2024), URL https://

docs.docker.com/compose/, accessed: 05-06-2024
[EDB24] EDB: PostgreSQL vs. MySQL: A 360-degree Comparison (2024), URL

https://www.enterprisedb.com/blog/postgresql-vs-mysql-

360-degree-comparison-syntax-performance-scalability-

and-features, accessed: 07-08-2024
[Fie00] Fielding, Roy Thomas: Architectural styles and the design of network-based

software architectures, Ph.D. thesis (2000)
[Git24a] Github: semantic-layer (2024), URL https://github.com/topics/

semantic-layer, accessed: 21-07-2024
[Git24b] Github: Understanding GitHub Actions (2024), URL https:

//docs.github.com/en/actions/learn-github-actions/

understanding-github-actions, accessed: 15-07-2024
[Git24c] GitLab: CI/CD development guidelines (2024), URL https://

docs.gitlab.com/ee/development/cicd/, accessed: 15-07-2024

78

https://www.bsi.bund.de/DE/Themen/Verbraucherinnen-und-Verbraucher
https://www.bsi.bund.de/DE/Themen/Verbraucherinnen-und-Verbraucher
https://cube.dev/
https://www.statista.com/statistics/1256245/containerization-technologies-software-market-share/
https://www.statista.com/statistics/1256245/containerization-technologies-software-market-share/
https://www.statista.com/statistics/1256245/containerization-technologies-software-market-share/
https://docs.getdbt.com/docs/build/about-metricflow
https://docs.getdbt.com/docs/build/about-metricflow
https://db-engines.com/de/system/Greenplum;PostgreSQL
https://db-engines.com/de/system/Greenplum;PostgreSQL
https://www.destatis.de/DE/Themen/Wirtschaft/Preise/Publikationen/Energiepreise/statistischer-bericht-energiepreisentwicklung-5619001241015.html
https://www.destatis.de/DE/Themen/Wirtschaft/Preise/Publikationen/Energiepreise/statistischer-bericht-energiepreisentwicklung-5619001241015.html
https://www.destatis.de/DE/Themen/Wirtschaft/Preise/Publikationen/Energiepreise/statistischer-bericht-energiepreisentwicklung-5619001241015.html
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://www.enterprisedb.com/blog/postgresql-vs-mysql-360-degree-comparison-syntax-performance-scalability-and-features
https://www.enterprisedb.com/blog/postgresql-vs-mysql-360-degree-comparison-syntax-performance-scalability-and-features
https://www.enterprisedb.com/blog/postgresql-vs-mysql-360-degree-comparison-syntax-performance-scalability-and-features
https://github.com/topics/semantic-layer
https://github.com/topics/semantic-layer
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://docs.gitlab.com/ee/development/cicd/
https://docs.gitlab.com/ee/development/cicd/

Bibliography

[Har19] Harris, Austin and Sartipi, Mina: Data integration platform for smart and
connected cities, in: Proceedings of the Fourth Workshop on International
Science of Smart City Operations and Platforms Engineering, CPS-IoT
Week ’19, ACM

[Har20] Hartmann, Nils: React, dpunkt.verlag, Heidelberg, 2nd edn. (2020)
[Hel09] Helmis, Steven and Hollmann, Robert (Editors): Webbasierte Datenintegra-

tion, SpringerLink, Vieweg+Teubner Verlag / GWV Fachverlage GmbH,
Wiesbaden, Wiesbaden (2009), URL https://link.springer.com/

content/pdf/10.1007/978-3-8348-9280-5.pdf

[Hlu21] Hlupic, Tomislav and Punis, Josip: An Overview of Current Trends in
Data Ingestion and Integration, in: 2021 44th International Convention on
Information, Communication and Electronic Technology (MIPRO), IEEE

[HM20] Hossein Motlagh, Naser; Mohammadrezaei, Mahsa; Hunt, Julian and
Zakeri, Behnam: Internet of Things (IoT) and the Energy Sector. Energies
(2020), vol. 13(2):p. 494

[Hos24] Hoseini, Sayed; Theissen-Lipp, Johannes and Quix, Christoph: A survey on
semantic data management as intersection of ontology-based data access,
semantic modeling and data lakes. Journal of Web Semantics (2024), vol. 81

[Hua23] Huawei Technologies Co., Ltd.: Cloud Computing Technology, Springer,
Singapore, 1st edn. (2023)

[Idc21] Idc and Statista: Volume of data/information created, captured,
copied, and consumed worldwide from 2010 to 2020, with fore-
casts from 2021 to 2025 (in zettabytes) [Graph]. In Statista
(2021), URL https://www.statista.com/statistics/871513/

worldwide-data-created/

[Ihi20] Ihirwe, Felicien; Di Ruscio, Davide; Mazzini, Silvia; Pierini, Pierluigi and
Pierantonio, Alfonso: Low-code engineering for internet of things: a
state of research, in: Proceedings of the 23rd ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems: Com-
panion Proceedings, MODELS ’20, ACM

[Inm96] Inmon, William H.: Building the data warehouse, Wiley computer publishing,
Wiley, New York, NY, 2nd edn. (1996)

[Jay19] Jayaratne, Madhura; Nallaperuma, Dinithi; De Silva, Daswin; Ala-
hakoon, Damminda; Devitt, Brian; Webster, Kate E. and Chil-
amkurti, Naveen: A data integration platform for patient-centered e-
healthcare and clinical decision support. Future Generation Computer
Systems (2019), vol. 92:pp. 996–1008

[JRC19] JRC., CEU.: Web Application Programming Interfaces (APIs): general pur-
pose standards, terms and European Commission initiatives., Publications
Office (2019)

79

https://link.springer.com/content/pdf/10.1007/978-3-8348-9280-5.pdf
https://link.springer.com/content/pdf/10.1007/978-3-8348-9280-5.pdf
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/

Bibliography

[Kau23] Kaufmann, Michael and Meier, Andreas: SQL and NoSQL Databases:
Modeling, Languages, Security and Architectures for Big Data Management,
Springer Nature Switzerland (2023)

[Kaz96] Kazman, R.; Abowd, G.; Bass, L. and Clements, P.: Scenario-based
analysis of software architecture. IEEE Software (1996), vol. 13(6):pp.
47–55

[Kof21] Kofler, Michael: Docker, Rheinwerk Computing, Rheinwerk Verlag, Bonn,
3rd edn. (2021)

[Kon18] Konopasek, Klemens: SQL Server 2017, Hanser eLibrary, Hanser, Carl,
München (2018)

[Kö14] Köppen, Veit; Sattler, Kai-Uwe and Saake, Gunter: Data Ware-
house Technologien., Mitp Professional, MITP, 2nd edn. (2014),
URL https://search.ebscohost.com/login.aspx?direct=

true&db=nlebk&AN=979062&site=ehost-live

[Las23] Laster, Brent: Learning GitHub Actions, O’Reilly, Beijing, 1st edn. (2023)
[Lyu15] Lyu, Dao-Ming; Tian, Yu; Wang, Yu; Tong, Dan-Yang; Yin, Wei-Wei and

Li, Jing-Song: Design and Implementation of Clinical Data Integration and
Management System Based on Hadoop Platform, in: 2015 7th International
Conference on Information Technology in Medicine and Education (ITME),
IEEE

[Mar82] Martin, James: Application development without programmers, Prentice-Hall,
Englewood Cliffs, N.J., 5th edn. (1982)

[Mar93] Marsch, Jürgen and Fritze, Jörg: SQL, Vieweg+Teubner Verlag (1993)
[Mas24] Masmoudi, Maroua; Ben Abdallah Ben Lamine, Sana; Karray, Mo-

hamed Hedi; Archimede, Bernard and Baazaoui Zghal, Hajer: Se-
mantic Data Integration and Querying: A Survey and Challenges. ACM
Computing Surveys (2024), vol. 56(8):pp. 1–35

[McD24] McDonald, Andy: Temporal Tables and how to use them in SQL Server
(2024), URL https://sqlspreads.com/blog/temporal-tables-

in-sql-server/, accessed: 09-07-2024
[Mic23] Microsoft: Temporal tables (2023), URL https://

learn.microsoft.com/en-us/sql/relational-databases/

tables/temporal-tables?view=sql-server-2017, accessed:
09-07-2024

[Mic24] Microsoft: Das API-Gatewaymuster im Vergleich zur direk-
ten Kommunikation zwischen Client und Microservice (2024),
URL https://learn.microsoft.com/de-de/dotnet/

architecture/microservices/architect-microservice-

container-applications/direct-client-to-microservice-

communication-versus-the-api-gateway-pattern, accessed:
16-07-2024

80

https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=979062&site=ehost-live
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=979062&site=ehost-live
https://sqlspreads.com/blog/temporal-tables-in-sql-server/
https://sqlspreads.com/blog/temporal-tables-in-sql-server/
https://learn.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables?view=sql-server-2017
https://learn.microsoft.com/de-de/dotnet/architecture/microservices/architect-microservice-container-applications/direct-client-to-microservice-communication-versus-the-api-gateway-pattern
https://learn.microsoft.com/de-de/dotnet/architecture/microservices/architect-microservice-container-applications/direct-client-to-microservice-communication-versus-the-api-gateway-pattern
https://learn.microsoft.com/de-de/dotnet/architecture/microservices/architect-microservice-container-applications/direct-client-to-microservice-communication-versus-the-api-gateway-pattern
https://learn.microsoft.com/de-de/dotnet/architecture/microservices/architect-microservice-container-applications/direct-client-to-microservice-communication-versus-the-api-gateway-pattern

Bibliography

[New15] Newman, Sam: Microservices, mitp Verlags, [Germany], 1st edn.
(2015), URL https://ebookcentral.proquest.com/lib/thm/

detail.action?docID=2089872

[Nie21] Nie, Wenyi; Zhang, Quanjiang; Ouyang, Zhiqiang and Liu, Xingang: Design
of big data integration platform based on hybrid hierarchy architecture,
in: 2021 IEEE 15th International Conference on Big Data Science and
Engineering (BigDataSE), IEEE

[Ope24] Open Source Initiative: The Open Source Definition (2024), URL https:

//opensource.org/osd, accessed: 01-06-2024
[Ove23] Overflow, Stack: Most used web frameworks among developers worldwide,

as of 2023. Statista (2023)
[Pas14] Pasculescu, Adrian; Schoof, Erwin M.; Creixell, Pau; Zheng, Yong; Ol-

hovsky, Marina; Tian, Ruijun; So, Jonathan; Vanderlaan, Rachel D.;
Pawson, Tony; Linding, Rune and Colwill, Karen: CoreFlow: A com-
putational platform for integration, analysis and modeling of complex
biological data. Journal of Proteomics (2014), vol. 100:pp. 167–173

[Pau21] Paulus, Alexander; Burgdorf, Andreas; Pomp, Andre and Meisen, Tobias:
Recent Advances and Future Challenges of Semantic Modeling, in: 2021
IEEE 15th International Conference on Semantic Computing (ICSC), IEEE

[Pin23] Pinho, Daniel; Aguiar, Ademar and Amaral, Vasco: What about the
usability in low-code platforms? A systematic literature review. Journal
of Computer Languages (2023), vol. 74:pp. 101–185

[Pos23] Postman, Inc.: Postman 2023 State of the API Report (2023), URL https:

//www.postman.com/state-of-api/, accessed: 18-07-2024
[Ric15] Richards, Mark: Software Architecture Patterns, O’Reilly, 1st edn. (2015)
[Ric20] Richards, Mark: Fundamentals of software architecture, O’Reilly, Beijing,

1st edn. (2020), unitary Architecture
[Ros13] Rossak, Ines: Grundlagen der Datenintegration, Carl Hanser Verlag GmbH

& Co. KG (2013), pp. 16–60
[Sar17] Sarnovsky, M.; Bednar, P. and Smatana, M.: Data integration in scal-

able data analytics platform for process industries, in: 2017 IEEE 21st
International Conference on Intelligent Engineering Systems (INES), IEEE

[Sch16] Schnider, Dani: Data Warehouse Blueprints, Hanser eLibrary, Carl Hanser
Verlag GmbH & Co. KG, München (2016)

[Sch17] Schicker, Edwin: Datenbanken und SQL, Springer Fachmedien Wiesbaden
(2017)

[Ste24] Stephan, Max: Building a modular and scalable data-driven analytics plat-
form, Master’s thesis, Technische Hochschule Mittelhessen (University of
Applied Science) (2024)

[Sub19] Subramanian, Harihara: Hands-on RESTful web API design patterns and
best practices, Packt Publishing, Birmingham, UK (2019)

81

https://ebookcentral.proquest.com/lib/thm/detail.action?docID=2089872
https://ebookcentral.proquest.com/lib/thm/detail.action?docID=2089872
https://opensource.org/osd
https://opensource.org/osd
https://www.postman.com/state-of-api/
https://www.postman.com/state-of-api/

Bibliography

[Syn24] Synmetrix: Synmetrix Website (2024), URL https://synmetrix.org/,
accessed: 09-07-2024

[Sá24] Sá, Daniel; Guimarães, Tiago; Abelha, Antonio and Santos, Manuel Filipe:
Low Code Approach for Business Analytics. Procedia Computer Science
(2024), vol. 231:pp. 421–426

[Wey17] Weynand, Christopher: Improving Hosted Continuous Integration Services,
no. 108 in Technische Berichte des Hasso-Plattner-Instituts für Softwaresys-
temtechnik an der Universität Potsdam, Universitätsverlag, Potsdam (2017)

[Wir19] Wirdemann, Ralf: REST, Carl Hanser Verlag GmbH & Co. KG (2019), pp.
27–37

[WM15] Winters-Miner, Linda A.; Bolding, Pat; Hill, Thomas; Nisbet, Bob;
Goldstein, Mitchell; Hilbe, Joseph M.; Walton, Nephi; Miner, Gary;
Jakubowski, Jacek; Kulach, Leslaw and Murawski, Piotr: Platform
for Data Integration and Analysis, and Publishing Medical Knowledge as
Done in a Large Hospital, Elsevier (2015), pp. 1019–1029

[Wol18] Wolff, Eberhard: Microservices, dpunkt.verlag, Heidelberg, 2nd edn. (2018)
[Zha18] Zhao, J T; Jing, S Y and Jiang, L Z: Management of API Gateway Based on

Micro-service Architecture. Journal of Physics: Conference Series (2018),
vol. 1087

82

https://synmetrix.org/

	Inhaltsverzeichnis
	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Approach
	1.4 Limitation

	2 Fundamentals
	2.1 Data Warehouse
	2.2 ETL Process
	2.2.1 Extraction
	2.2.2 Transform
	2.2.3 Load
	2.2.4 ETL-Tools

	2.3 Open Source Software
	2.4 Application Programming Interfaces
	2.5 Container
	2.6 Low-Code Platform
	2.7 SQL

	3 Related Work
	4 Requirements
	4.1 User Requirements
	4.2 System Requirements
	4.3 Business Requirements

	5 Concept
	5.1 Architecture
	5.2 Services
	5.2.1 Data Integration
	5.2.2 Core Database
	5.2.3 Plausibility
	5.2.4 Semantic Layer
	5.2.5 Model Synchronizer
	5.2.6 API-Layer

	5.3 Graphical User Interface
	5.3.1 Data integration
	5.3.2 Data modeling
	5.3.3 Plausibility check

	5.4 Summary

	6 Implementation
	6.1 Prerequisites
	6.2 Data Integration
	6.2.1 Software Selection
	6.2.2 Airbyte
	6.2.3 Integration

	6.3 Core Database
	6.3.1 Software Selection

	6.4 Semantic Layer
	6.4.1 Software Selection
	6.4.2 Dynamic Modeling

	6.5 Model Synchronizer
	6.5.1 Database Changes
	6.5.2 Realization

	6.6 Graphical User Interface
	6.6.1 Data Integration
	6.6.2 Data Modeling

	7 Evaluation
	7.1 Develop Scenarios
	7.2 Perform Scenario Evaluations
	7.3 Reveal Scenario Interactions
	7.4 Overall Evaluation

	8 Conclusion
	8.1 Discussion
	8.2 Limitations and Future Research

	Bibliography
	List of abbreviations

