
Master Thesis
Building a Modular and Scalable Data-Driven Analytics Platform

Submitted in Partial Fulfillment of the Requirements for the Degree

Master of Science (M.Sc.)

to the Department of MNI
Technische Hochschule Mittelhessen

(University of Applied Science)

by

Max Stephan

August 11, 2024

Referee: Prof. Dr. Frank Kammer

Co-Referee: Prof. Dr. Harald Ritz

Declaration of Independence

I hereby declare that I have composed the present work independently and have not
used any sources or aids other than those cited, and that all quotations have been clearly
indicated. The thesis has not been submitted to any other examination authority in the
same or a similar form and has not been published. In addition, I agree that my thesis
will be subjected to the THM internal plagiarism check.

Gießen, on August 11, 2024 Max Stephan

The increasing amount of data available and collected is leading to an increase in
data-driven decision-making. This helps companies to make better business decisions
and reduce production and service costs. In order to analyze data, this thesis proposes
a concept for an analytics platform based on complex use cases, since existing solutions
cannot be used for complex use cases, or can only be used at high cost. The concept
was originally developed from an analytics platform for a local energy supplier, but
always with a view to creating a generalized concept based on existing systems and
findings from the literature. The concept proposes a service-based architecture with
ten services to create the analytics platform. This includes an application to allow
non-technical users to analyze data and a calculation subsystem to calculate metrics.
This thesis also includes descriptions and ideas on how to implement the concept and
which existing open source software could be used to realize parts of the concept. Finally,
a scenario-based evaluation was carried out, showing the effectiveness of the concept
and its limitations. This results in the open questions for future work to create a builder
UI or plugin system that allows easy creation of new diagram types for visualization
and the ability to monitor values and send notifications for errors etc.

Die zunehmende Menge an verfügbaren und gesammelten Daten führt zu einem Anstieg
der datengesteuerten Entscheidungsfindung. Dies hilft Unternehmen, bessere Geschäft-
sentscheidungen zu treffen und Produktions- und Servicekosten zu senken. Um Daten
zu analysieren, schlägt diese Arbeit ein Konzept für eine Analyseplattform vor, die auf
komplexen Anwendungsfällen basiert, da bestehende Lösungen für komplexe Anwen-
dungsfälle nicht oder nur zu hohen Kosten eingesetzt werden können. Das Konzept wurde
ursprünglich aus einer Analyseplattform für einen lokalen Energieversorger entwickelt,
jedoch immer mit dem Ziel, ein verallgemeinertes Konzept auf Basis bestehender Systeme
und Erkenntnisse aus der Literatur zu erstellen. Das Konzept schlägt eine serviceori-
entierte Architektur mit zehn Diensten vor, um die Analyseplattform zu realisieren.
Dazu gehören eine Anwendung, die es auch nicht technischen Nutzern ermöglicht, Daten
zu analysieren, und ein Berechnungs-Subsystem zur Berechnung von Metriken. Diese
Arbeit enthält auch Beschreibungen und Ideen, wie das Konzept umgesetzt werden
kann und welche vorhandene Open-Source-Software zur Realisierung von Teilen des
Konzepts verwendet werden kann. Schließlich wurde eine szenariobasierte Evaluation
durchgeführt, die die Effektivität des Konzepts und seine Grenzen aufzeigt. Daraus
ergeben sich offene Fragen für zukünftige Arbeiten zur Erstellung einer Builder-UI
oder eines Plug-in-Systems, das die einfache Erstellung neuer Diagrammtypen zur Vi-
sualisierung und die Möglichkeit zur Überwachung von Werten und zum Senden von
Benachrichtigungen bei Fehlern usw. ermöglicht.

Contents

List of Figures iii

List of Tables v

Listings vii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives and Approach . 2
1.3 Limitation . 2

2 Fundamentals 3
2.1 Analytics Platform . 3
2.2 Low-Code Platform . 3
2.3 Modular and Scalable Software . 4
2.4 Container . 4
2.5 Application Programming Interface (API) 5
2.6 Hypertext Transfer Protocol (HTTP) 6
2.7 Representational State Transfer (REST) 7
2.8 GraphQL . 8
2.9 Open Source Software (OSS) . 8
2.10 C4 Model . 9

3 Requirements 11
3.1 Foundations . 11
3.2 Functional Requirements . 12
3.3 Quality Requirements . 14

4 Related Work 15
4.1 Differentiation from Existing Systems 15
4.2 Literature . 16

5 Concept 19
5.1 System Architecture . 19
5.2 System Context . 23

i

Contents

5.3 System Overview . 24
5.4 Interface . 24
5.5 API Security . 26

5.5.1 Authentication . 26
5.5.2 Authorization . 30

5.6 Data Storage . 33
5.7 Data Access . 33
5.8 Analyze . 34

5.8.1 Calculations . 34
5.8.2 Visualization . 39
5.8.3 Manual Data input . 47

5.9 Summary . 47

6 Implementation 49
6.1 Interface . 49
6.2 API Security . 50

6.2.1 Authentication . 50
6.2.2 Authorization . 51

6.3 Data Storage . 53
6.4 Analyze . 54

6.4.1 Calculations . 54
6.4.2 Visualization . 58

7 Evaluation 71

8 Conclusion 75
8.1 Discussion . 75
8.2 Limitations and Future Research . 76

Bibliography 77

ii

List of Figures

2.1 Applications in Containers (based on [Doc24]) 5
2.2 Application Programming Interface Categories 6
2.3 HTTP Messages (based on [Gou02]) . 7
2.4 C4 Model (based on [Bro24b]) . 9

5.1 Diagram Legend . 19
5.2 Architecture Styles (based on [Ric20]) 22
5.3 [System Context] Analytics Platform . 23
5.4 [Container] Analytics Platform . 24
5.5 API Gateway Pattern . 25
5.6 Token-based Authentication . 26
5.7 Token-based Authentication Variants . 27
5.8 Refresh Token Rotation . 28
5.9 Auth Service with SSO . 29
5.10 Token Login . 30
5.11 Mandatory Access Control Example . 31
5.12 Auth Policy Service Usage . 32
5.13 Automatic Database API Generation . 33
5.14 Event-driven Architecture Topologies (based on [Ric20]) 35
5.15 [Container] Calculations with all Dependencies 36
5.16 Scheduler Job Generation Example . 37
5.17 Worker Data Exchange . 38
5.18 Calculations Process . 39
5.19 Application Overview (Wireframe) . 40
5.20 Application Analysis (Wireframe) . 40
5.21 Report View (Wireframe) . 41
5.22 Data Export Variants . 42
5.23 Application Analysis Filters (Wireframe) 43
5.24 Application Analysis Filter Mapping (Wireframe) 43
5.25 Application Analysis Filter Mapping example 44
5.26 Application Data Abstraction (Wireframe) 45
5.27 Application Users (Wireframe) . 45
5.28 Application Calculations (Wireframe) 46

iii

List of Figures

5.29 Application Calculation Creation (Wireframe) 46
5.30 Application Runner (Wireframe) . 47

6.1 OPA Usage (based on [Clo24c]) . 52
6.2 Diagram Classes . 62
6.3 TextDiagram Example . 62
6.4 Merging Multiple Charts . 66
6.5 Filter Classes . 68

iv

List of Tables

3.1 Excerpt from the Product Requirements Document 11

5.1 Explanation of Architectural Characteristics (based on [Ric20]) 20
5.2 Rating of Architectural Characteristics (based on [Ric20]) 23

7.1 SAAM Scenarios (administrators) . 71
7.2 SAAM Scenarios (users) . 72
7.3 SAAM Scenario Interactions . 72

v

Listings

2.1 GraphQL Schema . 8
2.2 GraphQL Request . 8
2.3 GraphQL Resonse . 8

5.1 HTTP Basic Authentication . 26
5.2 Access Control List Example . 30
5.3 Role-based Access Control Examlple . 31
5.4 Attribute Based Access Control Examlple 31

6.1 GraphQL Mesh Configuration Example 50
6.2 Sign JWTs in Go . 51
6.3 Parse JWTs in Go . 51
6.4 Role-based Access Control Example [Clo24c] 53
6.5 Custom API Function Example [Pos24] 54
6.6 Create a NATS Connection . 55
6.7 Process Changes . 55
6.8 Fetch all Changes . 56
6.9 Publish Jobs . 56
6.10 Consume Jobs . 56
6.11 Execute Jobs . 57
6.12 Runner Example . 58
6.13 Runner Dockerfile . 58
6.14 React Component Example . 59
6.15 Dynamic Input Definition Example . 59
6.16 DynamicInput Implementation . 60
6.17 DynamicInput Usage . 61
6.18 Abstract DiagramType Class . 63
6.19 abstract DiagramType Class . 63
6.20 TextDiagram Configuration . 63
6.21 Abstract DiagramType class . 64
6.22 Example TextDiagram Component . 64
6.23 Abstract DiagramType Class . 65
6.24 MergeGroup Class . 65

vii

Listings

6.25 MergeGroup Example . 66
6.26 Abstract DiagramType Class . 67
6.27 Example getUsedColumns Implementation 67
6.28 Register a Diagram Type or Merge Group 68
6.29 Abstract Filter Class . 68
6.30 Abstract Filter Class . 69
6.31 Example TextFilter Class . 69
6.32 Abstract Filter class . 70
6.33 Example TextFilter Class . 70

viii

1 Introduction

1.1 Motivation

The use of data-driven decision-making has increased in recent years, largely due to
the increased availability and collection of data [Rid19]. As studies show, data creation
and storage will grow from 64.2 zettabytes in 2020 to an estimated 181 zettabytes in
2025 [Idc21]. By analyzing this data, companies can make better decisions than their
competitors and stay ahead of them, since the analytics allow them to gain insight to
guide, optimize and automate their business decisions. This results in the achievement
of organizational goals, such as reducing production or service costs. [Bos09] As a
result, analyzing data is nowadays a critical part of all types of organizations and
businesses [Cho18]. There are numerous articles in the popular media and numerous
books highlighting the exciting prospects of data collection and analysis, which shows
the relevance of this topic. But even with an abundance of data available, extracting
value from it is still a challenging task. As a result, a data analysis task will typically
involve the use of a combination of tools for the organization and analysis of the collected
data. [Aci14]

In light of the previously outlined benefits of data analytics, a regional energy provider
sought to use an analytics platform capable of displaying data in dashboards and reports,
calculating efficiency metrics, and more for its power plants within its district heating
network. Since the structure of the plants can vary from plant to plant, the company
wanted a system that would define consistent analytics across these plants with as little
effort as possible, as the heating network currently consists of more than 150 power
plants. The required analytics platform must therefore be able to handle very complex
use cases, which none of the existing platforms can do, or only at a very high cost (see
more in Section 4.1), leading to the development of a custom analytics platform.

Other utilities have similar problems, and many other industries need complex data
analysis platforms. For example, in smart cities, where vast amounts of data must be
collected and analyzed to improve living standards [AN15]. Or in healthcare, where
data analytics can help make informed decisions to improve patient health outcomes
[Rag14]. In other critical sectors, such as agriculture, analytics platforms are needed to
increase food safety and improve efficiency [NKK22]. So the concept was developed and

1

1 Introduction

described in a more generalized way and derived as a concept for an analytics platform
that can fulfill complex requirements.

1.2 Objectives and Approach

The objective of this thesis is to design a software for an analytics platform with
complex requirements. This includes deriving concept ideas from existing concepts and
implementations while showing their limitations. Another objective is to evaluate the
designed concept by incorporating scenarios to demonstrate its effectiveness.

The initial step in archiving the objectives involves identifying the system’s requirements
and subsequently making technical decisions (Chapter 3). Afterwards, existing analytics
platforms and concepts are presented and compared to see if they can meet the require-
ments (Chapter 4). Then, a concept is proposed that fully satisfies the requirements,
and some ideas are given on how to easily extend the concept if needed (Chapter 5).
After that, the difficult parts of the reference implementation are shown (Chapter 6).
Chapter 7 evaluates the previously described concept based on the scenarios identified
by the stakeholders during the development of the original system. Finally, the concept
is discussed in a conclusion and future extensions are debated.

1.3 Limitation

In order to perform analysis, a lot of data needs to be stored and collected. This is a
difficult process because the data typically does not come from a single source, but from
many systems in different formats. In order to perform analysis, a system is needed that
can integrate all this data into a single system, unify the formats, and build relationships
between the data. Since analysis requires accurate data, this system must also validate
and clean up the data if necessary. This thesis does not address any of these issues and
assumes that such a system already exists. The system that was developed and used
for the analysis platform on which this concept is based is described in a co-worker’s
master’s thesis [Pel24].

2

2 Fundamentals

2.1 Analytics Platform

A data analytics platform is software used to collect, process, analyze and visualize
large amounts of data. It provides tools for exploring data, including visualizing the
data and running machine learning algorithms or other statistical functions on the data
to discover patterns, correlations and trends. In this thesis, the latter is referred to as
metric calculation. Analysis platforms often use dashboards to visualize and explore
data dynamically and interactively. [Amp24]

As stated in the limitations section, this thesis is not about collocating or integrating
data, but about analyzing the data, which includes metrics calculation and visualizing
the data for human analysis. In a business context, this process is known as Business
Intelligence (BI), so tools that provide this functionality are also referred to as Business
Intelligence platforms. To simplify the data analysis process, some analytics platforms
offer the ability to use a low-code approach to visualize data and calculate metrics.
[Ave23]

2.2 Low-Code Platform

Low-code platforms (LCP), or also called low-code application platform (LCAP) and low-
code development platform (LCDP), is a class of software development. Its primary goal
is to increase productivity and reduce the cost of developing and maintaining software
systems, while also allowing for easy adoption in a rapidly changing environment. This
is done by reducing the need for traditional coding and giving the user tools to build
software at the problem level without needing to know many details about the underlying
software implementation. For example, an LCP gives the user tools to access external
data, authenticate the user, and build a GUI with a graphical interface. [Boc21]

Low-code platforms have become increasingly popular in recent years, with research
showing that the market revenue for low-code development will increase from $7.87
billion in 2018 to an estimated $32 billion in 2024 [Gar22]. They are particularly popular

3

2 Fundamentals

for database applications, mobile applications, process applications and request handling
applications, and all the major cloud players include them in their general-purpose
solutions [Tis19]. Part of this popularity, says Waszkowski [Was19], stems from the
problem that while the demand for information systems is growing, the number of people
employed in IT departments is not correspondingly growing. This calls for systems that
can be operated and customized by non-IT staff, which can be achieved using low-code
platforms. [Was19] However, low-code platforms today are mostly used to build small
applications rather than applications that are modular and scalable [Tis19].

2.3 Modular and Scalable Software

In software architecture, a modular architecture describes software that is built from
multiple components that are interconnected. This makes it easy to replace one part
(module) of the software with another without changing the other parts of the software.
[Men22]

A scalable software is a software that has the ability to scale itself to adapt to an increased
demand. There are two types of scaling, horizontal and vertical scaling. Horizontal
scaling distributes the workload among multiple independent machines to improve the
processing capacity. In contrast, vertical scaling increases the memory, upgrades the
hardware and runs more processes on the same machine. In general, vertical scaling can
be applied to almost any type of software, while horizontal scaling requires changes to be
made to the software that needs to be scaled. [Sin14] Modular software typically makes
it easier to scale software horizontally, because the parts (modules) of the software
work independently and can run on multiple machines [Men22]. For easy deployment of
modular software, a container runtime such as Docker can be used.

2.4 Container

Containers can be used to deploy applications in a scalable, secure and easily migrateable
way. Instead of running the application on the host system or a virtual operating system,
only parts of the host system are used (see figure 2.1). This has the advantage that
each container runs in an isolated environment with its own file system, users and
environment variables, while still being lightweight and resource efficient. A container is
defined using an image, which defines the file system of the container at startup. This
image contains all the configurations, libraries and system tools that the application
needs to run. To run containers, a container runtime is needed to take the image

4

2.5 Application Programming Interface (API)

definition and run the container. According to a statistic from Datanyze [Dat23], Docker
[Doc24] is the most popular container runtime. [Hua23]

Ap
p

A

Ap
p

B

Ap
p

C

Ap
p

D

Ap
p

E

Container Runtime

Host Operating System

Infrastructure

Containerized Applications

Figure 2.1: Applications in Containers (based on [Doc24])

Since it is sometimes necessary to share files between the host operating system and the
container, or between containers, it is possible to use mounting. The container runtime
therefore provides the ability to mount files or folders into a container, which are then
shared between them. This is also needed to persist data from a container, as when
the container is stopped and rebuilt, the container’s file system will only contain the
files configured in the image. So files or folders that should persist between restarts,
such as database data, should be mounted. [Hua23] For the communication between
applications running in a container, an application programming interface could be
used.

2.5 Application Programming Interface (API)

An application programming interface (API) is an interface that allows applications to
exchange information with an abstraction of the underlying implementation. It can
be used to allow third parties to extend an application. APIs can be divided into two
general categories: in-process and out-of-process APIs (see Figure 2.2). In-process APIs
are APIs where the API call is handled by the same process for which the call was made.

5

2 Fundamentals

For example, a Java method call from one class to another is an in-process API. An
out-of-process API is an API where the call and execution are not handled by the same
process. These API calls often involve data that traverses a network, such as a REST
API call over the HTTP protocol. [Gou22]

Response

Class B

API Call

Class A

Process

Response

Application B

Application A

Process A

Process B

API Call

Network

in-process API out-off-process API

Figure 2.2: Application Programming Interface Categories

2.6 Hypertext Transfer Protocol (HTTP)

The hypertext transfer protocol (HTTP) is a protocol for exchanging data. It is used
everywhere on the Internet to transfer web pages, images, movies, etc. It uses reliable
data transfer and guarantees that the data will not be damaged or scrambled in transit,
even if it comes for the other side of the globe. Internet communication via HTTP
normally takes place between a web client (such as a browser) and a web server. [Gou02]

HTTP sends messages in a specific format for communication (see Figure 2.3). These
messages contain a start line that indicates what to do for a request and what happened
for a response. Header fields for additional configuration, and the body, which carries
the data. [Gou02]

6

2.7 Representational State Transfer (REST)

 Get /test/hi.txt HTTP/1.0

 Accept: text/*
 Accept-Language: en,de

 Content-type: text/plain
 Content-length: 19

 Hi! I`m a message!

Request message Response message

 HTTP/1.0 200 ok

Figure 2.3: HTTP Messages (based on [Gou02])

2.7 Representational State Transfer (REST)

REST, which stands for Representational State Transfer, is by far the most widely used
API architecture [Pos23]. It was first proposed by Fielding [Fie00] for communication
between distributed hypermedia systems. The standard defines principles for accessing
and manipulating Internet resources via an API. It defines six constraints that require a
client-server architecture, that the API is stateless, that it is cacheable, that it contains
a unified interface, that it uses a layered system, and that it allows program code to
be sent on demand. In REST, each resource has a unique identifier called a Unified
Resource Identifier (URI) to access it. A resource could be anything like a file, a
dashboard, a user profile etc. So the URI /dashboard/1 could return the dashboard
with the ID one. REST uses HTTP as the protocol for client-server communication.
The HTTP verbs GET, PUT, POST and DELETE are used to specify what should
happen to a resource on a REST request. GET simply returns the item, PUT creates a
new resource, POST edits a resource and DELETE deletes a resource. In REST, each
resource has one or more representations that determine the response to the request.
For example, a resource can be returned as a web page in the HTML format or in the
JavaScript object notation (JSON) data format. [Fie00, Gou02]

REST is not the only widely used API architecture, there is for example GraphQL,
which was the third most used API technology in 2023, used by 29% of respondents
[Pos23].

7

2 Fundamentals

2.8 GraphQL

GraphQL [The24e] is a query language that can be used to query data for building client
applications. It describes data requirements and interactions using an intuitive and
flexible syntax. In GraphQL, a request source is called a document, which is similar to
a resource in REST. Each document can contain operations: queries, mutations, and
subscriptions to retrieve data, modify data, or be notified of data changes. To define the
capabilities of a document, GraphQL has a type system that defines the request and
response types. The definition of all documents of a service is referred to as a schema
(see Listing 2.1 for an example). [The24e]

Listing 2.1: GraphQL Schema

1 type Plant {

2 title: String

3 variant: String

4 }

To retrieve data, a GraphQL query can be sent to the server via an HTTP POST
request, which contains a self-defined name, the documents it wants to receive, and the
response fields it is interested in (see Listing 2.2 for an example). This query then results
in a JSON response that contains the requested information or an error (see Listing 2.3
for an example). [The24e] There are many open source programs and libraries available
to use GraphQL, such as Apollo Server [Apo24b] and Apollo Client [Apo24a].

Listing 2.2: GraphQL Request

1 query PlantQuery {

2 plant(variant: "heat") {

3 title

4 }

5 }

Listing 2.3: GraphQL Resonse

1 {

2 "data": {

3 "plant": {

4 "title": "Heat Plant"

5 }

6 }

7 }

2.9 Open Source Software (OSS)

Software that is called open source software is software that has a license that guarantees
everyone to read, redistribute, modify and use the software without cost. These criteria
are defined by the Open Source Initiative [Ope24]. Normal OSS is developed publicly
by internet-based communities of volunteers, but there are also some companies or

8

2.10 C4 Model

non-profit organizations that provide their software as OSS. These companies usually
earn money with services and support around the software or non-open source extensions.
There are many open source software systems available today that are used by companies
around the world. [Ben10] In order to specify and document the architecture of an open
source system, the C4 model can be used for this purpose.

2.10 C4 Model

The C4 Model [Bro24b] is an approach to documenting software architecture using
diagrams. It defines four levels of diagrams to create an abstraction layer that makes it
easier for viewers to see only relevant parts of the architecture. The model defines four
basic architectural parts: Person, Software System, Container and Component. The
Person represents a human user of the software. A Software System describes something
that provides value to its users, and is the highest level of abstraction. It includes the
software system described by the C4 Model and the software systems required for the
current software system. Other definitions often refer to it as an application, product,
or service. A Container represents an application or data store that must be run for the
software system to function. It has nothing to do with the Docker container described
above except for the fact that the names match. The last part is a Component, which is
a collection of related functionality encapsulated behind a well-defined interface. For
example, in the Java programming language, this is a collection of implementation
classes that are encapsulated behind an interface. [Bro14, Bro24b]

Software System

Container

Component

Code

Component Component

Code Code

Container Container

... ...

......

... ...

Level 1

Level 2

Level 3

Level 4

Figure 2.4: C4 Model (based on [Bro24b])

The four levels are defined in a hierarchical order so that the user can zoom in to see more
and more details of the architecture. This concept can be compared to something like

9

2 Fundamentals

Google Maps, where it is possible to zoom in to see more details of the map, but instead
for an architectural description. The first level is a context diagram, which is a high-level
diagram that shows the scope of the software, including system dependencies and actors.
The second level is a container diagram, which shows high-level technology choices
(Containers) with their dependencies and the communication between them. The third
level is a component diagram, which shows the components and their relationships. The
last level is the code diagram, which shows the implementation details of each component
using existing code diagrams such as UML class diagrams, etc. The last two levels are
optional and can be omitted if they do not add value, or they can be auto-generated
from the actual implementation. [Bro14, Bro24b]

10

3 Requirements

To design the analytics platform, requirements are needed to lay the foundation. The
requirements are derived from the specific features of the company and from existing
analytics platforms. Bot are outlined next and afterwards the requirements are presented.
The requirements are divided into two categories. Functional requirements, define what
functions the system must provide and quality requirements, define the quality that
the previously described requirements must satisfy. A key of the form <first category
letter><number> (e.g., F1 - Functional Requirement one) is assigned to each requirement
for later reference.

3.1 Foundations

In order to define the specific requirements for the energy supplier analytics platform, a
product requirements document was created. This was used as a basis for the concept
requirements. Table 3.1 shows an excerpt with the relevant requirements.

Keyword Requirements
Reports It should be possible to view all stored data in dashboards that con-

tain visual elements. Users should be able to create and edit these
dashboards.

Metrics Efficiency metrics should be calculated for each plant. These metrics
should be flexibly created and edited by the user. Some metrics may
require machine learning algorithms.

Easy use No programming should be required to create dashboards. And it
should be possible to create templates or reuse parts.

Time It should be possible to analyze and display data in specific time
periods and granularity, such as monthly and yearly.

Exports Exporting data and dashboards in common formats should be possible.
Grouping There should be the ability to create individual or general dashboards.
Security A user administration with different authorization levels should be

provided.

Table 3.1: Excerpt from the Product Requirements Document

11

3 Requirements

Existing analytics platforms fall into three categories. First, there are analytics platforms
that focus on creating and combining algorithms to generate metrics and insights for the
data. This includes the KNIME [KNI24b] platform, which allows blocks of algorithms
to be graphically linked together to analyze data. It is also possible to visualize the data
and there results, but it’s not possible to create interactive dashboards. The second
categories are analytics platforms where the main focus is to visualize the data on
dashboards. The tools Metabase [Met24b] and Apache Superset [The24c] are the most
popular in this category and allow to use a low-code approach to visualize and combine
data by creating interactive dashboards. The third category consists of systems that
can do both. These include systems from the major cloud or software vendors such
as Google Cloud [Goo24b], Microsoft Azure [Mic24b] and Amazon AWS [Ama24], SAP
[SAP24] and Snowflake [Sno24b]. All provide a platform consisting of multiple tools to
analyze and visualize data. There are also open source tools such as LinceBI [Lin24]
and Knowage [Eng24]. These also provide a platform for visualizing and analyzing data.
The concept for which the requirements are built must be of the third category to fulfill
the needs from the product requirements document.

3.2 Functional Requirements

F1 - Use by non-technical persons. Because the people who analyze data for an
organization are typically not programmers or system administrators, but data scientists,
they have a limited technical background. Therefore, the system must be easy for these
people to use without the need for technical support. So the system needs an intuitive
graphical interface for all features. This is similar to all the analytics platforms listed
above, which all provide this functionality in some way.

F2 - Easily addable and flexible dashboards and metrics. Because new dash-
boards or metrics are often needed or change over time, it should be easy to add new
dashboards and metrics without programming, such as in Metabase, Apache Superset
for dashboards and KNIME for metrics. It is also difficult to predict which dashboards
and metrics will be needed in the future, so they should be as flexible as possible.

F3 - Individual and general dashboards. To account for the fact that some
dashboards are used by only a few users and others by almost everyone, it should
be possible to create ‘individual’ dashboards that only the creator sees, and ‘general’
dashboards that are shared with all users who need them.

F4 - Dashboard reusability. Since some part of a dashboard and its display may
be similar in different dashboards, it should be easy to reuse dashboard or parts of a
dashboard.

12

3.2 Functional Requirements

F5 - Data abstraction. As an analytics platform can contain a lot of data with
complex structures and relationships, it should be possible to define abstractions over
the structures. This would make it easier for users to use this data without a deeper
understanding of the underlying data structure. This would also reduce the initial
overload and make it easier for administrators to change these structures without
affecting the analytics. Just like Metabase, Apache Superset or Snowflake, for example.

F6 - Export to standard formats. Since some dashboards and analysis results may
be shared with non-system users or other companies, it should be possible to export the
data to standard formats such as PDF, Image (PNG, JPG), JSON, and CSV. This can
be done by any of the analytics platforms listed above.

F7 - Time range analysis [use case specific]. Many analyses need to be performed
over a given period of time with a certain granularity in the use case of the reference
system, an analytics platform for a local energy supplier. For example, a user wants to
monitor the efficiency of a heat generation plant for this year grouped (granularity) on a
monthly basis. But the given values may not be at the given granularity (e.g., monthly),
so the system must provide a way to determine the values for that granularity. For
example, if the meter readings of a given heat generation plant are generated daily and
the granularity is monthly, the system needs to find the value for the last day of the
month and use it for analyzes.

F8 - Same outcome with different queries [use case specific]. Since the structure
of a heat generation plant can be very complex, the system needs a way to define
analyzes in a general way, but with variables that can be changed for each plant. So that
the definitions of the analyses do not have to be done several times similarly, but with
the flexibility to realize the differences in the plants. For example, if a heat generating
plant was a heat pump, an efficiency indicator is the coefficient of performance (COP),
which can be calculated with (|Q|

W), where Q is the heat output and W is the electricity
used for its production. The formula itself is always the same, but where Q and W

come from differs from heat generation plant to heat generation plant. So it should
be possible to define the formula for the COP globally, but the mapping for each heat
generation plant must be stored separately and inserted when the calculation is actually
done.

F9 - Machine learning predictions [use case specific]. To calculate metrics or
predicted future values, the analytics platform needs a system that can perform machine
learning predictions, such as AI analysis, on the stored data. These calculations should
be able to generate new data that can also be viewed and analyzed by the user or used
for future calculations. To make the process as easy as possible, these calculations
should be performed automatically when the data changes.

13

3 Requirements

3.3 Quality Requirements

Q1 - Scale system easily. Because usage and data can grow rapidly, it should be
easy to scale the system as needed without much effort.

Q2 - Efficient data Excess. To avoid waiting time for users, the system should access
data efficiently to reduce system load times. This can also help reduce system operating
costs, as efficient data access reduces the system resources needed.

Q3 - Secure data access. Since an analytics platform has access to most of the
critical data in a company, security is a critical issue. Therefore, it should be possible
to define restrictions on which users can access which data.

Q4 - Extendable and replaceable components. Since the software was developed
for special use cases, it should be easy to add more of these special use cases by extending
the software with new parts or replacing existing parts with a better or possibly already
existing implementation. This also includes the system’s API, which should allow all
the system’s features to be used by an external program for easy integration into other
programs.

Q5 - Keep development and maintenance costs low. In order to keep the
cost of the system close to that of a standard solution, the design and development
should balance the trade-off between fully satisfying the requirement and the cost
of development and maintenance. To do this, and to focus on the specifics of the
application, open source software should be used to implement parts of the software
whenever possible.

Q6 - Host platform on-premises [use case specific]. Since the analytics platform
holds sensitive data, it should be hosted on-premises, so all services used must provide
this option.

14

4 Related Work

4.1 Differentiation from Existing Systems

This section contains a distinction from existing analytics platforms, which are first
described in section 3.1 and were initially selected based on extensive internet research.
This is accomplished by describing how well the systems can meet the requirements
described in Chapter 3.

The KNIME analytics platform fulfills many functional requirements: analyses can be
performed easily and flexibly for non-technical users [F1], analyses (called workflows
in KNIME) can be shared with others [F3, F4], data can be exported to standard
formats [F6], and time-series or machine learning predictions are possible [F7, F9]. Its
disadvantages are that KNIME does not allow configuring data abstraction [F5] and
unify very complex metrics [F8]. It also does not have an easy way to create visual
dashboards that update in real time for users who just want to see the data [F2], and
some analyses still require some programming knowledge. Another disadvantage is that
in order to share workflows or parts of them with own infrastructure [F3, F4, Q6] an
expensive license is needed, starting at €35,000 per year. [KNI24b, KNI24a]

Since Metabase and Apache Superset have very similar features, they are grouped
together in this comparison. Both allow non-technical people to create interactive
dashboards [F1, F2], share them with others [F3], reuse parts of them [F4], export data
[F6], and perform time range analysis [F7]. In terms of data abstraction, both allow
this, while in Apache Superset it requires programming, as Metabase allows this with a
graphical editor [F5]. Both do not allow the definition of metrics or machine learning
predictions [F8, F9]. [Met24b, The24c]

The tools from the major vendors all provide solutions for most of the requirements,
except for the requirement [F8]. But they have the disadvantage that they are very
costly, for example to use Snowflake a minimum cost of €6,000 per month [Sno24a] is
required, which does not include the cost of setup, integration, etc. Adding custom
features can also be very expensive. Some solutions, such as Snowflake, cannot be
hosted on-premises [Q6]. [Goo24b, Mic24b, Ama24, SAP24, Sno24b]

15

4 Related Work

LinceBI can handle most of the requirements expect [F8]. However, it is difficult to
set up and use because the documentation is not very informative, and some parts are
only available in Spanish. It is also not very transparent which features are included in
which versions, so the open source version may not be able to meet all requirements.
Customizations are also very difficult due to the poor documentation. [Lin24]

Knowage can handle most of the requirements except [F8] and [F1] only partially. While
some parts of the analytics platform can be used and configured by a non-technical
person, some parts cannot. For example, the configuration of the data abstraction [F5]
can only be done by a technical person. The documentation on how to deploy the
program in a production environment is also poor. [Eng24]

As this differentiation shows, there are programs that could solve the requirements, but
at a high cost or effort. And even then, they may not be as customizable as desired. So
building a custom solution that still uses some available open source tools seems to be
the best compromise for the requirements to get a solution that fits them well by not
being too expensive. For comparison with existing concepts in the literature, some of
them are listed in the next section.

4.2 Literature

Related literature was searched in the ACM, AIS, IEEXplore, and Sciencedirect databases
using the keyword ‘analytics platform’ and ‘Business intelligence’. The publications
found were limited by their focus on either describing a concept for an analytics platform,
deriving features needed for a good analytics platform, or comparing different analytics
platforms. In addition, many of the publications found were not selected because they
were strongly focused on data integration or solving a problem with a single, already
existing analytics platform. At the end there were six publications left, which will be
described in the following.

Three of the selected publications describe the concept and implementation of an
analytics platform. Pankaj et al. [Pan06] describes important factors about dashboard
implementations and challenges in doing so. Some of their important factors include
that the dashboard should be built out of widgets and enable the analysis of dynamic
data that allow the user to take proactive action in the operational time frame. The
publications do not contain much detailed information about the implementation itself.
It is also older (from 2006) which results in technical limitations and smaller amount of
available data to be analyzed/displayed.

Wang et al. [Wan23] describes a concept for a low-code analysis platform in the energy
sector. The concept proposes to build dashboards from multiple slices to make their

16

4.2 Literature

appearance flexible. To decouple the visualization from the business logic, they allow
the user to build the slices without a strict binding to specific data. To display the
data, the user then uses a splice arrangement that maps the data to the visual elements.
This arrangement can also include filters to restrict the data used. The limitations of
the concept for Wang et al. [Wan23] are that they lack the ability to perform complex
computations [F8, F9] or time analysis [F7]. They also do not describe how the platform
could be extended, e.g. to add new types of diagrams (called graphs in the paper)
without much effort [Q4].

The third concept of Sá et al. [Sá24], describes a low-code approach to business analytics.
Their concept allows users to configure and customize a dashboard (called panel in the
paper), built from widgets, for data analysis without any code. The limitations are that
the user has to upload the data himself and there are no complex calculations [F8, F9]
or time analysis [F7] possible. The concept also does not address how future extensions
could be handled without much effort [Q4].

Gunklach et al. [Gun23] conducted a study on what are the current problems with
dashboards and how data stories can solve these problems. They identified seven key
issues for dashboards. Based on this, they proposed five requirements for data stories
to solve these problems. They then developed and evaluated a data story based on the
requirements. The evaluation showed that three requirements can help improve data
stories: Data stories should include a narrative structure by presenting information
sequentially, they should include guidance in the form of text-based explanations and
annotations, and they should include data perspectives that the user can choose to
easily access the data that is relevant to them.

The last two publications are studies that compare current analysis platforms. While a
comparison of current tools is already available in Section 4.1, these studies still provide
important insight into what a good analytics platform needs.

Khatuwai and Puri [Kha22] compare the tools Tableau, Power BI, and Spago BI. They
present six key characteristics of analytics platforms (referred to in the paper as BI
tools). According to them, an analytics platform should provide executive dashboards,
location intelligence, what-if analysis, interactive reports, a data abstraction layer, and
the ability to rank the available data in dashboards.

The publication by Aveiro et al. [Ave23] compared several open source analytics platforms
(they call them business intelligence platforms) for integration into a low-code platform.
First, they analyze which open source analytics platforms exist and then select four
platforms for further comparison: LinceBI, Knowage, Metabase, and Superset. Five
criteria were used for the comparison: Visualization and Dashboards, the ability to
query, aggregate and analyze data without coding, the ability to import data from

17

4 Related Work

multiple systems, the ability to handle large and complex data sets, and the ability to
perform data mining techniques and algorithms. The paper identified Knowage as the
best fit for their use case.

In conclusion, none of the concepts proposed in the relevant literature can meet the
requirements. However, there are still helpful insights about which problems can occur,
how they could be solved, and which features are important for an analytics platform.
Therefore, literature learning were derived from the literature review, which were taken
into account later in the concept and are presented below.

L1 - Data Visualization. Aveiro et al. [Ave23] suggest that visualization features
are crucial to enhance user experience, simplify tasks and make data analysis easier
to understand. Other literature such as Sá et al. [Sá24], Wang et al. [Wan23], and
Khatuwai and Puri [Kha22] also use data visualization as part of their concepts.

L2 - Explore/Visualize Data without Coding (Low-Code Approach). Aveiro
et al. [Ave23], Sá et al. [Sá24], Wang et al. [Wan23], and Khatuwai and Puri [Kha22]
all suggest allowing the user to explore and visualize the data without coding.

L3 - Dashboards should be build from multiple Build Blocks. According to Sá
et al. [Sá24] and Pankaj et al. [Pan06] dashboards should be built from multiple widgets
to show all relevant information. Wang et al. [Wan23] call these widgets building
blocks, and Gunklach et al. [Gun23] also use building blocks to define their proposed
dashboards.

L4 - Easy Adoption of Dashboards for different data Perspectives. According
to Pankaj et al. [Pan06], different personalities in an organization need different data, so
different or customizable dashboards are needed. Gunklach et al. [Gun23] also suggests
providing different data perspectives that can be selected by the user so that the user
can see the information the user is interested in.

L5 - Ability to Aggregate or Combine Data into Meaningful Metrics. To
make better business decisions, data should be aggregated or combined into meaningful
metrics according to Pankaj et al. [Pan06]. The system proposed by Wang et al.
[Wan23] also allows the user to combine multiple data sets into a single diagram.

L6 - Interactive and Real-Time Analyses. Since nowadays, many data are collected
in real time, Aveiro et al. [Ave23], Khatuwai and Puri [Kha22], Wang et al. [Wan23]
and Pankaj et al. [Pan06] propose the use and support for real time analysis. To better
analyze these real-time data, Aveiro et al. [Ave23], Khatuwai and Puri [Kha22], and
Wang et al. [Wan23] also propose or use interactive analysis.

18

5 Concept

The literature learnings from Chapter 4 are used to propose a concept for an analytics
platform that fulfills the requirements described in Chapter 3. The proposed concept
is described using the C4 Model. The next section contains a selection of the overall
system architecture. Then the system context diagram is shown. After that, all the
services are shown in a container diagram. Details about what the services do, why they
are needed, and how they should be implemented are then explained in the following
sections. The context diagram and container diagrams in this Chapter include the
shapes shown in the legend of Figure 5.1. The third and fourth level diagrams are not
included in this concept as they would contain excessive implementation detail.

Container Container,

Database

Container,

MessageBrocker

Person
Software System, 

External Relationship

Container,

Group

Software System

Figure 5.1: Diagram Legend

5.1 System Architecture

This section describes the overall architecture style of the system. This is done by first
giving an overview of the most common architectures and then selecting one. Note that
this architecture style is the base architecture style for the described concept, but this
does not mean that some parts of the system may follow a different architecture style.
This concept is known as architecture partitioning, and is a common approach because
everything in software is a trade-off [Ric20].

19

5 Concept

Overall, architecture styles can be divided into two main categories: monolithic and
distributed. Monolithic architecture styles have a single deployment unit for all the
program code, while distributed styles have a number of deployment units that are
connected to each other through a network. For this concept, the monolithic architec-
tures layered, pipeline, and microkernel and the distributed architectures service-based,
event-driven, space-based, orchestration-driven service-oriented, and microservices are
considered and compared in the following section. The architectures described by
Richards [Ric20] form the basis of this selection. [Ric20]

In order to make the comparison easier to read, a preselection is made first, without
explaining the architectural styles in detail. The remaining styles are then explained and
compared. The preselection is based on Richards’ [Ric20] architecture ratings and the
system requirements (Chapter 3). The architecture ratings consist of ratings for a set
of characteristics of the architecture. Ratings for evolution [Q4], modularity [Q4, Q5],
performance [Q2], and scalability [Q1] are the most important factors in the preselection
process as these can be derived from the requirements. The characteristics used and an
explanation for them are shown in Table 5.1. [Ric20]

Characteristics Explanation
Evolutionary How well handles the architecture implementation and criteria

changes.
Modularity Does the architecture work well with independent and interchange-

able modules?
Overall cost Is it possible to build a system using this architecture without

incurring significant costs?
Performance How well can a performant system be implemented with this

architecture?
Scalability Can a system built with this architecture scale easily?
Simplicity Is this architecture easy to implement?
Testability How well can a system with this architecture be tested?

Table 5.1: Explanation of Architectural Characteristics (based on [Ric20])

The layered architecture has a poor rating on each of these characteristics (1–2/5) and is
therefore not considered any further. Both the pipeline architecture and the microkernel
architecture have bad ratings for scalability (1/5), so they are not discussed either. The
orchestration-driven service-oriented architecture has a bad rating at Evolutionary (1/5)
and a not so good rating at Performance (2/5) with also excludes it. Similarly, the
microservices’ architecture also has a not so good rating for performance (2/5), but
very good ratings for all other characteristics (5/5), which is why it is still considered
for the comparison. All other architecture styles have good ratings for the relevant
characteristics. Therefore, they are used for the comparison (see Table 5.2 for an
overview). [Ric20]

20

5.1 System Architecture

Service-based architecture

The service-based architecture style typically consists of a discrete UI, discrete remote
coarse-grained services, and a monolithic database (see the upper left diagram in Figure
5.2). However, there are also topologies with multiple discrete UIs or multiple databases.
These services are typically independent and separately deployed parts of the application.
Often these services are partitioned by domain (for example, item assessment) and
are therefore referred to as domain services. A user interface accesses them through a
remote access protocol, such as REST, which usually accesses the services directly, but
can also use an API layer between them. This style is a very popular choice for many
business-related applications because it is a flexible distributed architecture without the
complexity and cost of other distributed architectures. [Ric20]

Event-driven architecture

This style consists of decoupled event processing components that receive and process
events asynchronously (see the top-left diagram in Figure 5.2). It can be used to create
highly scalable and high-performance applications. This may be used as a standalone
architectural style or embedded in other architectural styles, such as event-driven
microservices. Its unique asynchronous capabilities can be a powerful technique for
increasing the overall responsiveness of a system. [Ric20]

Space-based architecture

The space-based architecture is designed to solve bottleneck issues with applications that
have high user load or variable and unpredictable concurrent user volumes. It consists
of multiple processing units, a virtualized middleware, and a data reader/writer (see the
lower left diagram in Figure 5.2). The Processing Units contain the application logic or
parts of it. Instead of reading/writing data directly into the database, it is kept in the
memory shared among the Processing Units, to then persist the data, it is read/written
asynchronously to the database throwing queries and the Data Reader/Writer. The
virtualized middleware is there to handle the incoming requests and coordinate the
processing between the processing units. The benefits of this architecture are elasticity,
scalability and performance, but it comes at the cost of a very complex application that
is also difficult to test. [Ric20]

Microservices architecture

The Microservices Architecture is an architecture in which the application is divided into
microservices. Microservices are small, independent services that work together to create
a large software system (see the lower left diagram in Figure 5.2). Each microservice
is an independent, deployed process that can be written in different programming
languages and updated independently. To collaborate, microservices communicate

21

5 Concept

over the network, for example using the REST protocol. The main advantage of this
architecture is its great decoupling, since each microservice runs independently, it can
use the best components for its use case, for example, it is not dependent on the shared
database and could use a different database style if it fits better. This also makes it
easy to scale the application because each microservice can be scaled individually. All
of this comes at the cost of duplication of some parts, high development complexity,
and performance drawbacks. [Ric20, New15, Wol18]

EventUser Interface

component
component

component
component

Database

service-based architecture Event-driven architecture

Event
Processor

Event
Processor

Event

Space-based architecture Microservices architecture

Processing
Unit

Virtualized Middleware

Processing
Unit

DatabaseWriter

Reader

Service

Database

Service

Database

API Layer

Brocker

Figure 5.2: Architecture Styles (based on [Ric20])

Table 5.2 gives an overview of the strengths and weaknesses of the selected architectures,
with a rating from one to five for each characteristic. The characteristics Evolution [Q4],
Modularity [Q4, Q5], Performance [Q2], and Scalability [Q1], Total Cost [Q5], Simplicity
[Q5], and Testability [Q5] from Richards’ [Ric20] are used for the selection, which
includes all the characteristics from the preselection. The meaning of each characteristic
is explained in Figure 5.1. As the table shows, microservices architectures are very

22

5.2 System Context

good at evolution, modularity, scalability, and testability, but very bad at performance,
total cost, and simplicity. Event-based architectures have similar strengths, except for
poor testability, but therefore have a better overall cost rating. The main advantages
of a space-based architecture are performance and scalability, at the cost of being very
complex to implement (simplicity, testability, total cost). Service-based architectures are
not as good as microservices and event-based architectures in their strong characteristics,
but still very decent, with the advantage that they are easier to implement. So they
give a good trade off of all the chosen characteristics, which this architecture is chosen
for this concept.

Characteristics Service-based Event-Driven Space-Based Microservices
Evolutionary • • • ◦ ◦ • • • • • • • • ◦ ◦ • • • • •
Modularity • • • • ◦ • • • • ◦ • • • ◦ ◦ • • • • •
Overall cost • • • • ◦ • • • ◦ ◦ • • ◦ ◦ ◦ • ◦ ◦ ◦ ◦
Performance • • • ◦ ◦ • • • • • • • • • • • • ◦ ◦ ◦
Scalability • • • ◦ ◦ • • • • • • • • • • • • • • •
Simplicity • • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦
Testability • • • • ◦ • • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • • • • ◦

Table 5.2: Rating of Architectural Characteristics (based on [Ric20])

5.2 System Context

The analytics platform is designed to be accessed by the data analytics user directly
or through a third-party system. As described in the limitations section, the analytics
platform requires a pre-defined data store with all necessary data stored. To run
complex computations, the system also needs a container runtime to execute them.
More information about this in section 5.8.1.

User
[Person]

Data Storage
(Core)

[Software System]
The Present Data

Storage

Container
Runtime

[Software System]
Runtime to execute

Tasks

Analytics

Platform

[Software System]
The Proposed Analytics

Platform

External
platforms
[Software System]

Potantial Other Systems
that use the data

Figure 5.3: [System Context] Analytics Platform

23

5 Concept

5.3 System Overview

Figure 5.4 shows an overview of all services of the application and their data flow. To
meet the requirements and to make the concept easier to understand, the Analytic
Platform has been divided into five main features: 5.4 Interface, 5.5 API Security,
5.6 Data Storage, 5.7 Data Access and 5.8 Analysis, which are implemented with one
or more services. A detailed explanation of why these services are needed and how
they are implemented can be found in the following sections. To improve clarity and
reduce the number of containers shown in the diagram, all containers related to the
Calculations feature are hidden in Figure 5.4, a figure containing these containers and
all their dependencies can be found in the Section 5.8.1 (Figure 5.15).

User
[Person]

Data Storage
(Core)

[Software System]
The Present Data

Storage

Container
Runtime

[Software System]
Runtime to execute

Tasks

Analytics Platform
[Software System]

Operator
[Container]

Data Storage

Auth
[Container]
API Security

Auth Policy
[Container]
API Security

Export Service
[Container]

Analyze

Gateway
[Container]

Interface

Analysis
[Container]

Data Abstraction,
Analyze

Calculations
[Container]
Calculations

External
platforms
[Software System]

Potantial Other Systems
that use the data

Figure 5.4: [Container] Analytics Platform

5.4 Interface

To implement an interface for accessing the services, two concepts could be used. One
concept is to directly access the services APIs in the web front-end. The other concept
uses the API gateway pattern for communication between the web front-end and the
services. The API Gateway pattern describes an architecture in which there is an API

24

5.4 Interface

Gateway service that is the single point of entry to all services. All communication to
the services goes through this endpoint. (see Figure 5.5). [Zha18, Dud20]

Service 1 Service 2

Service 3

Service 1 Service 2

Service 3

Access
Service

Access
Service

API
Gateway

BackendBackend

Independent access to all
microservices API gateway pattern

Figure 5.5: API Gateway Pattern

This concept uses the API Gateway pattern as it has several advantages, which is
implemented by the Gateway service. Because it allows easier standardization of the
API [Q5], has higher abstraction which makes it easier to swap out services [Q4, Q5].
It also makes requests more efficient [Q2], since only a single request is needed even
when multiple services are involved. Furthermore, it increases the security of the system
[Q3] because a single system checks the authentication, the architecture and services
are not publicly accessible, and the architecture of the system is harder to figure out.
[Zha18, Dud20]

Another consideration for the API gateway is how the data is requested by the client.
It could be either a REST API or a GraphQL API (see Section 2.7 for an explanation
of both). This concept suggests using GraphQL as it has a better resource usage
[Q2] according to Lawi et al. [Law21]. And a study by Brito and Valente [Bri20] also
shows that it is easier to implement API requests via GraphQL, even for experienced
developers.

25

5 Concept

5.5 API Security

To secure access [Q3] to data, analysis configuration, user accounts, etc., two essential
elements are authentication and authorization. Authentication is the process of verifying
that the user is who they say they are, and authorization is the process of verifying that
the current user is allowed to do what they are trying to do. [Jin18]

5.5.1 Authentication

There are two main methods of API authentication: Basic authentication and token-
based authentication. [Mad21]

Basic authentication is the simplest technique, which sends the username and password
encoded in base64 in the HTTP request header (see Listing 5.1). This technique has the
disadvantage that the username and password are needed in every request and therefore
must be stored by the application (Analysis) for an acceptable user experience [F1].
Since this can lead to serious security problems [Q3], this technique is not adopted for
this concept. [Mad21, Jin18]

Listing 5.1: HTTP Basic Authentication

Authorization: Basic dXNlcm5hbWVAcGFzc3dvcmQK

With token-based authentication, instead of sending the username/password combination
to the server each time, there is a special login endpoint that handles a temporary
token for the client. This token can then be used for further authentication (see Figure
5.6). This makes it more secure [Q3] because the password is not stored in the Analysis
service and the tokens expire over time, meaning that a stolen token is less damaging
than a password. That’s why the concept uses token-based authentication, where the
special login endpoint is realized by the Auth service, which takes the username and
password and generates a token. [Mad21]

Token

API Gateway
Login (username, password)

Client

Client API Gateway
Token

User Login

Normal API request

Figure 5.6: Token-based Authentication

26

5.5 API Security

There are two ways to implement token-based authentication: database-backed (DB)
tokens and self-contained (SC) tokens (see Figure 5.7). With database-backed tokens,
the access tokens are stored in the database to verify the token provided by the user
and to look up user information. In contrast, with self-contained tokens, all information
is stored in the token itself. To verify that the information stored in the token is valid,
the SC token contains a signature that can be validated by the server to verify the
authenticity of the token. [Mad21]

Token: 5796d6421ea7

Client

API Gateway5796d6421e
d29e385bee
aa8dda4165

...

Token: ...

User: test

Client

API Gateway

Token: eyJhbGciO...

Decode Token

User: test

database-backed tokens self-contained tokens

Figure 5.7: Token-based Authentication Variants

Both methods have advantages and disadvantages. While DB tokens can be easily
revoked if a token is leaked, they do not scale very well, are difficult to develop, and
create a single point of failure since a database is needed to store the tokens. In contrast,
SC tokens are difficult to revoke because once a token is issued, it remains valid until
its expiration date. However, SC tokens do not have the disadvantages of DB tokens
and also make validation in multiple services easier. [Mad21]

Since both have advantages, this concept uses a hybrid approach. The authentication
tokens are SC tokens with a short lifetime. However, a second SC token, a refresh token,
is created so that the user does not have to repeatedly log in [F1]. This token can then
be used to obtain a new authentication token. The refresh token’s ID is stored in the
database to check on a refresh whether the token has been used more than once; if
this is the case, all tokens generated from the same login chain, called a refresh token
family, are invalidated (see Figure 5.8). This concept is known as refresh token rotation.

27

5 Concept

[Lod24] This results in high security and the ability to revoke tokens with minimal delay
(maximum the expiration time of the access token). At the same time, the disadvantages
of DB tokens are minimized, since only a database call is needed to update the refresh
tokens, and the access tokens can still be used without it. The refresh token rotation
can also be implemented by the Auth service.

:Server:Client

Token
Expires

Login

Refresh(RT1)

AT1 + RT1

AT2 + RT2

:Server

AT2 + RT2

Refresh(RT1)

Invalidate
Family

:Client

Token
Expires

RT1 Leaked
RT1

Refresh(RT1)

Refresh(RT2)

Access Denied

:Malicous
Client

Access Denied

Normal process Stolen Refresh Token

Figure 5.8: Refresh Token Rotation

Another issue is how the authorization and refresh tokens are passed to the client/server.
There are two main possibilities: Cookies and the HTTP header [Mad21]. Since both
have their advantages, and it is not difficult to support both, the concept is to use both
and allow the client to decide which method is best for its purposes.

Single Sign-On (SSO)

To integrate the analytics platform into the existing infrastructure, it may be necessary
to integrate it with an existing single sign-on (SSO) system. A single sign-on system is
a central system that stores user information and allows a single sign-on for multiple
applications, so the application simply passes the user authentication process to the
SSO system [Shr24]. To integrate this into the Analytics Platform, the Auth service can,
instead of providing the username/password combination, just handle the communication

28

5.5 API Security

with the single sign-on system and generate the token when the SSO has validated the
user’s credentials (see Figure 5.9).

:Auth

Login (token)

Token

:SSO

User Information

:Application

Login (username, password)

Validate

Token

Figure 5.9: Auth Service with SSO

External System Authentication

To allow automated systems to access the Analytics Platform API [Q4], users should
be able to create system accounts. It would be bad for security [Q3] if users had to
give their username and password to these automated systems. As this would make
it difficult to identify if the user made the changes/requests or the system, it is not
possible to lock only some systems if they are compromised and the user has many more
accesses writes (see section 5.5.2) than the automatic system needs.

Since an automated system has no problem ‘remembering’ many symbols, a system
account does not need to have a username and password combination, but is authenti-
cated with a token called an API key. This has several advantages; the token is more
secure because the user cannot choose the symbols and length by himself, no username
has to be invented, etc. When the system user wants to make an API call, he must
first provide the API key to generate an access token, which can then be used to query
the API (see Figure 5.10). This is like logging in for a ‘normal’ user. The API key is a
self-contained (SC) token that contains the system user’s ID. This makes it possible to
revoke a system user’s authentication by removing the user from the database or setting
a flag that prevents the user from logging in. For this to work, the Auth service must
check on token login to see if the system user still exists and is not locked out.

29

5 Concept

:System

token

:API
Gateway

token

:Auth

system user

accessToken

:User

create
System user

create
system user

:Operator

create
system user

check (token)

system user

get accessToken
(token)

accessToken

get data
 (accessToken)

data

configure system
(token)

get accessToken
 (token)

Figure 5.10: Token Login

5.5.2 Authorization

There are four main paradigms for performing authorization, often referred to as access
control: Discretionary access control (DAC), mandatory access control (MAC), role-based
access control (RBAC), and attribute based access control (ABAC). [Ben06, Hu15]

Discretionary access control allows the owner or administrator of a resource, such as
a file, to control who has what rights. This can be done, for example, with an Access
Control List (ACL) that defines resources with users and their permissions (see Listing
5.2). [Ben06, Pfl24]

Listing 5.2: Access Control List Example

ACL(File1) = ((Alice, {read, write}),(Frank, {read}))

ACL(File2) = ((Bob, {execute}), (Janet, {read}))

30

5.5 API Security

Unlike DAC, mandatory access control does not define controls directly on resources
and users, but defines a hierarchical system that defines who can access which resources,
where each resource and each user is assigned to a hierarchical level. For example, there
are public, confidential, and secret levels: Then a user with the level confidential can
access resources with the levels public and confidential, but not with the level secret
(see Figure 5.11). [Cha21]

Confidential

Secret

Public

Figure 5.11: Mandatory Access Control Example

Role-based access control grants access to resources based on a user’s role. A role is an
abstraction that embeds a set of privileges along with the associated allowed actions.
Thus, unlike DAC and MAC, privileges are not assigned to users, but to roles. [Ben06]

Listing 5.3: Role-based Access Control Examlple

Roles:

- admin: can access everything

- editor: can edit files

- moderator: can write comments to files

- user: can read files

User1: admin

User2: editor, moderator

User3: user

ABAC facilitates the authorization of access to objects by applying a rule-based eval-
uation process that takes into account the attributes of entities (including users and
resources), operations and the environmental context relevant to a particular request.
[Pfl24]

Listing 5.4: Attribute Based Access Control Examlple

User attributes: Department

File attributes: Department, Creator, Archived

Policies:

31

5 Concept

- Can view a file if the user is in the same department as the document

- Can edit a file if the user is the owner and the file is not archived

- Deny access before 6 o'clock

This concept suggests using role-based access control or attribute-based access control.
As MAC cannot fulfill the requirement F3, since its hierarchical structure does not give
enough flexibility. DAC could be used to fulfill F3, but it would be very cumbersome to
maintain access rights to the stored data [Q3]. Because every user must be given access
to all the data he wants to access. Both RBAC and ABAC can handle all requirements,
which one should be used depends on the usage of the analytics platform. The proposed
implementation (see Chapter 6.2) uses RBAC because it is sufficient for the use case.

The Auth Policy service was designed to implement this. Because it must be possible to
determine whether an operation can be performed by users based on their roles or their
attributes. So the Auth Policy service takes a request from one of the other services
with all the necessary information like the user, the resources he wants to access, etc.
and with this information and the stored information about the roles or policies it
evaluates if this operation can be performed. It passes the result to the service, which
performs the operation based on the decision or returns an error (see Figure 5.12). To
obtain the user and their roles/attributes, the user must provide their authorization
token, which should then be passed to the Auth Policy service, since this token contains
this information. Therefore, the Auth service must include this information, which it
receives from the Operator service, when it creates the authentication token.

:API
Gateway :Auth Policy

OK
(username: test)

:Client

GetData(token)

Data

Check
(GetData, token)

:Sematic
Layer

Data

GetData

Figure 5.12: Auth Policy Service Usage

When implementing authorization for system users, they can be treated just like normal
users, allowing them to be assigned roles or attributes to ensure correct write access.

32

5.6 Data Storage

5.6 Data Storage

To store metadata, such as the structure of a dashboard, user accounts, etc., the analytics
platform needs a database to store this data. This data could be stored in the Data
Storage (Core) service, but to separate analytical and operational data, which increases
security [Q3] and makes implementation and scaling easier [Q1], a separate database is
used. This database is implemented by the Operator service.

To access and store data through the Gateway service into the database, it must be
accessible through an API. There are two ways to achieve this: Write a service that
provides an API to access and modify the stored data, or use a tool that automatically
generates an API based on the data structure (see Figure 5.13). The first approach has
the advantage that it may be possible to combine multiple requests into one, which can
improve performance and load times. On the other hand, it is much more difficult to
develop and has a higher probability of containing bugs or security vulnerabilities. Also,
many API generation tools include the ability to write custom functions at the database
level, for instance PostGraphile [Pos24], which largely negates the first advantage of a
custom solution. So this concept proposes to use a tool that automatically generates
the API. There are also some databases that include such a tool out of the box, such as
‘Dgraph’ [Dgr24], which can be used if the selected database ships with it.

Access Data

Database

Database API

Access Data

Generates API

API generation
tool

Reads data
structure

Figure 5.13: Automatic Database API Generation

5.7 Data Access

Since the concept does not specify how the Data Storage (Core) should be implemented
or which application should be used to provide this functionality, many things related

33

5 Concept

to data storage are outside the scope of this concept. However, this section provides
some features that the Data Storage (Core) should fulfill to be used with this concept.

The service should provide an option to retrieve the data through an API endpoint that
can then be accessed through the Gateway service (see Section 5.4) to make the data
available through the central API endpoint. In addition, the service should provide
access to a standardized query language (such as SQL) to facilitate the use of an
existing platform [F6]. The concept requires that the data be accessible in groups of
data (called tables) with fields (called columns) that contain the values. The columns
should have a data type to give the Analysis service more information about how to
render them. In the later sections, these tables are also referred to as data sources.
To abstract the analysis for the actual data source [F5] and to make the application
easier for non-technical users [F1], since they no longer need to know anything about
the underlying data structure, it should be possible to define ‘virtual’ data sources. For
these virtual data sources, it should be possible to select columns from different data
sources that should be included in this data source to create a new data source with
these columns.

5.8 Analyze

To query and analyze the stored data as a non-technical person [F1], an application is
required. This is implemented by the Analysis service described in Section (5.8.2). In
order to fulfill the requirements [F7], [F8] and [F9], a separate system is required to
perform complex calculations of metrics that are later used for analysis. The concept of
this is described in Section 5.8.1.

5.8.1 Calculations

To perform complex calculations [F7, F8, F9] of metrics, the analytics platform needs a
system that can calculate them on demand. Due to the complexity of implementing
this, multiple services are required. So the feature is implemented as a subsystem with
its own software architecture. This will be discussed in the following section, after which
the concept will be proposed based on the selected architecture.

Subsystem Architecture

The subsystem should use the event-driven architecture style (see Section 5.1 for an
explanation) because its unique asynchronous capabilities are perfect for a computation

34

5.8 Analyze

system that has many independent tasks where the system that initiates those tasks
does not need a response from them.

An event-driven architecture can be implemented with two primary topologies: the
mediator topology and the broker topology (see Figure 5.14). Both topologies have an
initial event that starts the process that can lead to a chain of subsequent events. The
difference between them is that the broker topology has no central event mediator, but
works with a chain-like transmission mechanism via a lightweight message broker (such
as RabbitMQ [Bro24a], etc.). Thus, in the broker topology, the initial event is published
to the broker, which is then consumed by an event process that publishes a processing
event upon task completion. If another event processor is interested in this event, it
uses it for its task and publishes a processing event of itself upon completion. This
chain continues until no one is interested in the ‘last’ processing event. In contrast, the
mediator topology uses a central event mediator to coordinate the workflow for events
that require the coordination of multiple event processes. The initial event is sent to
the event mediator, which generates processing events in different event channels, which
can then be processed by different event processors. [Ric20]

Initiating
Event

Message
Brocker

Event Processor

Event Processor

Event Processor

Processing
Event

Event Processor

Event ProcessorProcessing
Event

Event Channel

Initiating
Event

Event Mediator

Event Queue

Event Channel

Event Processor

Event Channel

Event Processor

Mediator TopologyBroker Topology

Event Channel

Event Channel

Figure 5.14: Event-driven Architecture Topologies (based on [Ric20])

Both topologies have advantages over each other, while the broker topology brings
highly decoupled event processor, high scalability, etc. It has the disadvantages that
the workflow control, error handling, etc. are difficult. The mediator topology on the
other hand tries to solve the problems of the broker topology at the cost of shrinking
the advantages of the broker topology. Thus, the choice between these two concepts
boils down to a trade-off between workflow control and error handling capabilities on
the one hand and high performance and scalability on the other. This concept uses
the broker topology because high performance and scalability [Q1, Q2] are much more

35

5 Concept

important for a computation system than workflow control and error handling. Also,
since the calculation service does not require many event processors, these issues are
not as significant. [Ric20]

Subsystem Concept

Figure 5.15 shows an overview of the services needed for the subsystem, with all other
services from this concept that have any relation to this system. The concept of services
and their communication is explained below.

Data Storage
(Core)

[Software System]
The Present Data

Storage

Container
Runtime

[Software System]
Runtime to execute

Tasks

Analytics Platform
[Software System]

Gateway
[Container]
Interface

Calculations

DB Change
Detection

[Container]
Calculations

Message

Brocker
[Container]
Calculations

Scheduler
[Container]
Calculations

Worker
[Container]
Calculations

Figure 5.15: [Container] Calculations with all Dependencies

Since the [F9] requirement demands that calculations be reevaluated when the required
data changes, the system needs a way to find out when and what data has changed.
This should be implemented by the DB Change Detection service. How the service
checks and retrieves the changes is beyond the scope of this concept, as it depends
heavily on the chosen Data Storage (Core) service implementation. When the service
detects a change, it should publish that change as an event to the Message Broker
service, this event is the initial event.

The Scheduler service listens to these events and uses them to generate job events,
which are its processing events (see Figure 5.18 for a sequence diagram). To generate
these jobs, the service should lock up which jobs are configured in the Operator service,
which could be configured with the application described above. These jobs should then
include information about which data sources they depend on, so that the Scheduler
can calculate which jobs need to run on the current changes (see Figure 5.16). The
Scheduler will then create an event for each job that depends on the changed data

36

5.8 Analyze

sources. These jobs should also contain the information for an actual computation
task to be performed, which can be a simple computation task or a machine learning
task. The service also includes the changed data in the job event so that it can be used
to execute the task. To improve performance and reduce system load, the Scheduler
service should combine multiple changes to the same data source into a single job if
they occur in close succession.

Data Source 1

Column 1

Column 2

Column 3

depends on

Job 1
Task: computation

Data Source 2

Column 1

Column 2

Column 3

depends on

Job 2
Task: machine

lerning

Id: 1
Data Source: 1

Scheduler

Job: 1
Task: computation

Changes: 1

Job Configuraton

Change Event

Execution Event

Scheduler run

Figure 5.16: Scheduler Job Generation Example

The Worker service exists to consume these job events and perform the actual calculations
(see Figure 5.18 for a sequence diagram). Since the jobs are independent of each other,
there could be more than one Worker service running at the same time if necessary,
which would then increase the number of jobs that could be executed in the same
amount of time [Q1].

To accurately calculate a job, the Worker may need more data than just the changes.
For example, the Worker calculates a difference between two values; if only one value
changes, the system needs to fetch additional data, in this example the second value for
the difference calculation. To do this, the job configuration should provide a way to
fetch data from the Data Storage (Core) service, which can use the changes as a filter
to dynamically resize the fetched data.

37

5 Concept

In order to run the job and accurately calculate the intended data, code is required to
perform this calculation. Since the system should not be limited in what calculations it
can perform [F9, Q4], it must be possible to run custom code that can be selected via
the job configuration. The concept fulfills this requirement with the ability to specify a
container image in the job configuration. This image is then used to start a container
that performs the actual computation. To do this, a container runtime is required that
is able to run these containers, for example a Linux server with Docker installed. In
this concept, these container images are referred to as runners.

The before described solution to start a container for the calculation brings a future
problem with it, how the container gets the data (changes and additional data), the
configuration and how the worker gets the result back. To solve this problem there are
three possible solutions. Write this information into environment variables, read/write
this information into files that are then mounted in the container, or allow the container
to access/write this information via an API, for example via the Gateway service. The
first option has the limitation that the size of an environment variable is limited (e.g.,
128 KB on a normal Linux system [Mat22]), since the size of the data can be much
larger, this option is not suitable. The third option is much more complex to implement
than the second, and also has security issues [Q3]. Since the container would need access
to the same network as the gateway service, and the gateway service would have to check
that the job can only read/write the data it needs, etc. So the second option is used in
this concept (see Figure 5.17). The Worker service generates two files, one containing
the data and another containing additional configurations. These configurations are
read from the job configuration and are there to allow users to make customizations to
the job execution without rewriting the code. These files are then mounted into the
container, which can then use them. To get the results back, the Container should write
them to another file that can be read by the Worker service.

spawns container

Worker

reads files
writes file

Container

data config

writes files

result

reads file

1

2

3

4

5

Container runtime

Figure 5.17: Worker Data Exchange

38

5.8 Analyze

These results then need to be written back to the Data Storage (core) service to be used
in future analyses and displayed to the user. As the data structure is job dependent, it
should be possible to define the output data source with its columns and data types
in the job configuration. The Worker service should handle the creation of this data
source and also the write-back of the result data.

The entire process of performing complex computations is shown in Figure 5.18 as a
sequence diagram to give a complete overview of the calculation concept.

:DB Change
detection

additonal data

:Worker

emit Job events

:Scheduler

calculated needet
Jobs

:Message
Brocker

change events

fetch data

:Core

changes

Watch Changes

emit change events

poll change events

poll job event

job event

:Container
Runtime

execute Job

job result

write job result

poll job event

loop

loop

[Job events exsist]

Figure 5.18: Calculations Process

5.8.2 Visualization

To meet the requirement that the application be usable by a non-technical audience
[F1], the application in many cases uses the low-code approach to allow the user to
configure/extend the application without the need for coding knowledge. For example,
it is possible to create new dashboards using a low-code editor.

Besides analyzing, the application should also perform other tasks and allow users to
change settings, etc. This gives the user a single point to use and manage the analytics
platform [F1]. To accomplish this, the application should have a navigation bar on the
left side that allows the user to access the different features of the application (see the

39

5 Concept

wireframe in Figure 5.19). To increase security [Q3] and make the application easier to
use [F1], the application should also display the features that the current user is allowed
to access. The header of the application can display useful information to the user, such
as which account they are currently logged into [F1], etc.

Header

Navigation

Analysis

Data Abstraction

Users

Content

Figure 5.19: Application Overview (Wireframe)

Analysis

In order to make analyzes and save/present them [F2, F3, L1], the application should
provide so-called reports. A report can be used privately by a single user or shared with
others [F3, L4]. The application should present all reports that the user has access to
(see left wireframe in Figure 5.20). A report itself consists of filters and multiple views
(see the right wireframe in Figure 5.20). Views allow the user to build a report that
consists of several individual blocks [L3], such as charts, text sections, etc., and makes it
possible to present multiple information on a single page [L5]. This also makes it easier
to reuse parts of the report [F2, F4, L4], as single views can be used as templates for
views in other reports. To make the look of a report as customizable as possible [F1], it
should be possible to drag and drop views and change their size. Views are also referred
to as widgets in similar systems such as Pankaj et al. [Pan06] and Sá et al. [Sá24].

Header

Navigation

Analysis

Data Abstraction

Users

Analysis

Report

Report

Report

Report

Report

Report

Report

Report

Header

Navigation

Analysis

Data Abstraction

Users

Analysis / Reports / 1

Filter

View

View

Figure 5.20: Application Analysis (Wireframe)

40

5.8 Analyze

Views can be opened individually to explore them in more detail and to create/edit
them (see Figure 5.21). The view itself also displays and uses the filters from the report
that are relevant to the current view (all filters with an assignment to the displayed
data are relevant to a view, see below for a detailed explanation). This allows future
data exploration at the view level [L6], and keeps the view consistent with the report,
as when a user opens a view from a report, it should still display the same data.

A view consists of one or more diagrams. A diagram is there to display the data [F2,
L1]. The type of diagram determines how the data is displayed. The application should
provide several diagram types like text, table, bar chart, line chart, pie chart etc. To
customize the appearance of the diagram and the selected data displayed, each diagram
type comes with its own type-specific settings. To allow combining different diagrams, it
is possible to create multiple diagrams on a single view, which allows better comparison
of the data or better presentation of the data [F2, L1, L5]. For example, it might be
possible to display a line chart on top of a bar chart, or a line chart in a table. Since
not all combinations of charts are valid, the chart type implementation should be able
to specify which combinations are valid and prevent the user from creating unusable
combinations [F1].

When a users edit a view a settings page should be displayed on the left side of the
application (see Figure 5.21). There it should be possible to select the data source of
the diagram (see Section 5.7), the diagram to edit, the current type of the diagram and
other type specific settings.

Header

Navigation

Analysis

Data Abstraction

Users

Analysis / Reports / 1 / View / 1

Filter

View

Settings

Select View/Table

Select Diagram

Select Type

Type Specific
Settings

Figure 5.21: Report View (Wireframe)

To allow the user to export the data [F6], the application should display a button at
the report and view level to select the desired format and download it. There are two
options to implement the transformation of the data and the download: Transform the
values into the desired output format locally or giving the user a download link where

41

5 Concept

the application can download the data from and transform the values in the backend
(see Figure 5.22). The first one has the advantage that its structure is easy to implement.
But the disadvantages are that the size of the exported data is limited by the user’s
memory, which varies from user to user, resulting in inconsistent behavior [F1]. So
the advantage for the second solution is that the size limit can be defined globally by
the application and changed without user notice if needed, the other advantage is that
format errors could be fixed without user notice since the application does not need an
update for this. Based on this, the second option is used for this concept and realized
via the Export Service.

:Data Storage
(Core)

data

:Analyses

data(report1)*

storeFile

transform data

:Data Storage
(Core)

data(report1)*

download link

storeFile

:Analyses

formated data
(report1, csv)*

:Export Service

transform
data

data

download*

Local transformation Server transformation

* For the sake of simplicity, the request via Gateway is not shown in this diagram.

Figure 5.22: Data Export Variants

Since the reports/views should be interactive and easy to customize [F2, L4, L6], it
should be possible to dynamically change the data displayed in a report. In order to do
this, it should be possible to create filters per report that allow filtering of the data.
When a user creates a new filter (on the report page), the user should be directed to a
new page where the user can change the settings of the filter (see the left wireframe in
Figure 5.23).

On this page, the user should be able to select the filter type, a display name, type-
specific settings, and the filter match. The filter type specifies which value(s) the filter
can handle and how the filter should be rendered. For example, a text filter will render

42

5.8 Analyze

a text field, a multiple select text filter will render a drop-down menu, etc. This allows
the user to create reports with all possible filter variants [F1, F2, L4]. In addition, the
user should be able to select the (default) match filter. The match filter defines how
the filter value should be compared to the actual data. For example, for a text filter,
the user could select that the actual value should start with the filter text, etc. This is
needed to make the filter(s) more flexible and data independent [F5]. For example, if a
data column contains the street and house number, it would not be possible to select
all entries for a street if the filter match setting were not available.

Header

Navigation

Analysis

Data Abstraction

Users

Analysis / Reports / 1

Filter Type

Filter Name

Filter Match

Filter Preview

Filter type Specific settings

Figure 5.23: Application Analysis Filters (Wireframe)

In order to apply the filters to the used data sources [F5], it is necessary to select a
column that should be checked by the filter, in this application this feature is called
Filter Mapping. The application should provide a new page, which should be displayed
when the filter is created, allowing the user to configure the mapping for each data
source (see wireframe in Figure 5.24). This configuration should include the column to
match and the filter match configuration, which will default to the previous setting. To
simplify the UI [F1], the application should hide the data sources that are not currently
used by default. This allows the user to change the mapping for unused data sources if
they plan to use them in the future, while still making the configuration easier.

Header

Navigation

Analysis

Data Abstraction

Users

Analysis / Reports / 1

Filter Mapping

Filter Mapping

Filter Mapping

Filter Mapping

Filter Mapping

Filter Mapping

Unused Views / Tables

Figure 5.24: Application Analysis Filter Mapping (Wireframe)

43

5 Concept

When the data sources are then queried while the report is being rendered, the filter is
evaluated based on the configuration. All existing filters for a data source configuration
are concatenated with an and and then appended to the query (see Figure 5.25). If
needed, there could also be an option to select how these filters would be concatenated,
such as a combination of and and or’s etc. Since this was not needed by the original
application, it is outside the scope of this concept, but could easily be added.

equals

starts with

Filter
value

Table

Column 1

Column 2

Column 3

View

Column 1

Column 2

Column 3

Query: Table Where Column 1 equals
value and Column 2 ends with value 2

Query: View Where Column 1 starts
with value

ends with

Filter 2
value 2

Figure 5.25: Application Analysis Filter Mapping example

To fulfill the requirement for time range queries [F7], the application should provide the
special filter type timeRange. This filter type should allow the user to select a start and
end date. It should also provide the ability to select the granularity as a filter match
option. This granularity then determines the blocks into which the query data will be
grouped, for example, if the data is available for every hour and the granularity is day,
the query will return aggregated day values.

Data Abstraction

To configure the data abstraction [F5] described in Section 5.7 with a low-code approach
[F1], the application should contain two pages. A page that shows an overview of all
views and allows editing or delete them (left wireframe in Figure 5.26). On this page,
there should also be a button to create new views, which leads to a new page (right
wireframe in Figure 5.26). On this page, it is possible to select all the tables with
their columns that should be included in the view. The application should restrict the
selectable tables according to the restrictions described in Section 5.7. On the right
side an overview should be displayed showing all selected tables with their columns [F1].
This page could also be reused to edit a view.

44

5.8 Analyze

Header

Navigation

Analysis

Data Abstraction

Users

Content

Data Abstraction

View

View

View

View

View

View

View

View

Header

Navigation

Analysis

Data Abstraction

Users

Content

Data Abstraction / new

OverviewSelected Table

Selected Table

Selected Table

Figure 5.26: Application Data Abstraction (Wireframe)

Users

To manage users and system users with their roles/attributes (see Section 5.5), the
application should provide a page for this purpose (see Figure 5.27) [F1]. On this page
it should be possible to edit user information, create new users and see their last login,
etc.

Header

Navigation

Analysis

Data Abstraction

Users

Users

User

User

User

User

User

User

User

User

Figure 5.27: Application Users (Wireframe)

Calculations

To configure and monitor the calculations described above [F1, F8, F9], the application
should have a calculations’ page showing all calculations and their dependencies (see
figure 5.28). It should also show when these calculations were last executed and provide
the ability to view execution logs. This page should also provide the ability to create a
new calculation, which will open in a new page.

45

5 Concept

Header

Navigation

Analysis

Data Abstraction

Users

Calculation

Calculation

Table

Calculation

Table

Calculation

Table

Calculation

Figure 5.28: Application Calculations (Wireframe)

In order to specify all the settings required for the calculations (see Section 5.8.1), the
creation page contains a stepper that guides the user through them (see Figure 5.29).
The stepper makes it easier for the user to create a calculation [F1], as the page is not
overloaded with all the information. The first step should allow the user to select the
tables that will trigger the calculation when they change. The second step should allow
the user to select additional data needed by the runner. After that, it should be possible
to select which runner should perform the calculation and set up runner configurations.
Finally, the user should be able to specify what and how to store the data that the
runner outputs.

Header

Navigation

Analysis

Data Abstraction

Users

Calculation

Calculation

Tables Additional

Data Runner Target

Selected Table

Selected Table

Selected Table

Next

Header

Navigation

Analysis

Data Abstraction

Users

Calculation

Calculation

Tables Additional

Data Runner Target

Next

Additional DataChanges

Header

Navigation

Analysis

Data Abstraction

Users

Calculation

Calculation

Tables Additional

Data Runner Target

Next

Runner Specific Settings

Select Runner

Header

Navigation

Analysis

Data Abstraction

Users

Calculation

Calculation

Tables Additional

Data Runner Target

Next

New TableOutput Format

Figure 5.29: Application Calculation Creation (Wireframe)

46

5.9 Summary

To specify which runner can be selected in the previously described stepper [F1, F8,
F9], the application should provide a page to view all runners and create new ones (see
Figure 5.30). When creating a new runner, it should be possible to specify the image,
the schema of the runner configuration and the schema of the output data.

Header

Navigation

Analysis

Data Abstraction

Users

Calculation / Runner

Calculation

Runner

Runner

Runner

Runner

Runner

Runner

Runner

Runner

Header

Navigation

Analysis

Data Abstraction

Users

Calculation / Runner / new

Calculation

image

Configuration Scheme

Output Scheme

Figure 5.30: Application Runner (Wireframe)

5.8.3 Manual Data input

To meet the requirements of [F8] and [F9], it may be necessary to store some additional
information for specific data in the database. For example, it may be necessary to store
a formula for calculating the efficiency of a power plant, the mapping of the meters to
the formula, etc. In such cases, it may be necessary to enter this data manually, as it is
not already available in any other system. If this is required, the application should
provide additional pages to insert this data by a non-technical person [F1].

5.9 Summary

This concept aims to construct an analytics platform that meets the specifications
outlined in Section 3. It proposes a service-based architecture consisting of ten different
services. For the interface, the gateway pattern is used, which should be implemented
by the Gateway service. For authentication, the system should use self-contained
tokens with refresh token rotation handled by the Auth service. In order to permit
machine logins, this service should also provide the ability to login using a token. For
authorization, the concept suggests using role-based access control or attribute-based
access control enforced by the Auth Policy. To store metadata, the Operator service
should provide a database with an automatically generated API. The external data
storage should provide an API that provides data in groups of data (tables) with
data types. It should also provide the ability to create virtual tables, for better data
abstraction. In order to provide the ability to make complex and individual calculations,

47

5 Concept

the concept proposes a subsystem that handles these calculations. The subsystem
should be built with an event-based architecture and consist of four services. It should
include a service to detect data changes and generate change events. A service to listen
to these events and generate events based on the configured jobs for these changes. To
actually perform the computations, it should also contain a service that listens to the job
events and computes the jobs with the configured container. For analyzing the data, the
concept proposes to create an application that allows to configure the analytics platform
and dynamically generate reports for analysis using a low-code approach. These reports
consist of multiple views that are then built from multiple diagrams to achieve full
customizability and reusability.

48

6 Implementation

This chapter describes the details of the implementation of the concept proposed in
Chapter 5. The description does not include all the implementation details, only the
difficult parts. This includes open source software choices that can be used to implement
parts of the concept. It describes the implementation of an analytics platform based
on the above concept for a local energy supplier, which uses this platform to monitor
power plants. Thus, some parts and assumptions of the implementation may not be
generalizable to other use cases in which the above concept could be used as well.

6.1 Interface

An existing open source solution is used to implement the Gateway service. Based on an
Internet search, the following API gateways were considered for implementation: Krak-
enD [KRA24], Kong [Kon24], gravitee.io [Gra24], Apache APISIX [The24b], GraphQL
Mesh [The24f], Tyk [Tyk24] and Wundergraph [Wun24].

The API gateways KrakenD, Kong, gravitee.io and Apache APISIX do not have the
ability to provide a GraphQL API directly, but only to proxy GraphQL APIs and/or
generate REST APIs from GraphQL APIs. These solutions are not suitable for this
implementation and will not be considered in the future, as this would require all services
to provide a GraphQL API in order to provide a general GraphQL API for the analytics
platform, as described in the concept. Wundergraph has a similar problem as it can only
combine multiple GraphQL APIs into one. [KRA24, Kon24, Gra24, The24b, Wun24]

Tyk and GraphQL Mesh both provide the functionality needed to generate a GraphQL
API from multiple sources. GraphQL Mesh allows the use of 13 different source protocols
while Tyk only allows 5 different ones, where all source protocols supported by Tyk
are also supported by GraphQL Mesh. Tyk has the advantage that it also provides
authentication, while in GraphQL Mesh this has to be implemented by the user. In
terms of configuration, Tyk provides a graphical interface where the user can configure
the endpoints and their mapping. This interface allows many configurations, but is
very manual, as for example a mapping from REST to GraphQL cannot be generated
automatically. GraphQL Mesh, on the other hand, generates the GraphQL API

49

6 Implementation

fully automatically and allows to customize the generation via a YAML configuration.
Therefore, the implementation uses GraphQL Mesh as the auto-generation of the API
and the higher number of data sources are important factors to reduce the development
time [Q5]. [Tyk24, The24f]

GraphQL Mesh is a framework that makes it easy to create GraphQL gateways without
a lot of coding. It allows the combination of multiple GraphQL APIs and the automatic
generation of GraphQL APIs for non-GraphQL sources. Listing 6.1 shows a sample
configuration that generates a GraphQL endpoint based on a REST endpoint. Similar
configurations are used to generate a unified GraphQL API for all services.

Listing 6.1: GraphQL Mesh Configuration Example

1 sources:

2 - name: RestAPI

3 handler:

4 openapi:

5 source: ./api/rest-api.json

6.2 API Security

6.2.1 Authentication

The Auth service is implemented in the go [Goo24a] programming language, due to
the experience of the developers and its ability to build scalable distributed systems
[Ana20]. This go service implements an API that takes the username and password
or tokens on login and validates them. It handles the creation of authentication and
refresh tokens, etc. To implement refresh token rotation, it gives each refresh token
a family ID and a token ID and stores the family with ID in the database. On each
refresh, it checks that the token’s ID matches the ID stored in the db. If so, the ID in
the database is incremented and a new token is generated. If not, the token has been
used twice and the entry in the db is deleted to invalidate all tokens.

For the implementation of the self-contained tokens, this concept uses JSON web tokens
(JWTs) as they are a standard format for self-contained security tokens. These tokens
consist of a set of claims about a user, represented as a JSON object, together with a
header describing meta-information and a signature to cryptographically protect the
token against tampering. [Mad21] The jwt-go [gol24] library is used to generate (sign)
and validate (parse) the tokens in go. To generate the token, there is a signing function
that takes the secret used to sign the token and the claims that should be included in
the token (see Listing 6.2). These claims include the current user with their roles and,

50

6.2 API Security

if the token is a refresh token, the token’s ID and family. This function also adds an
expiration time to the token based on the application configuration.

Listing 6.2: Sign JWTs in Go

1 func Sign(jwtSecret []byte, claims JWTClaims) (string, int64, error) {

2 claims, expirationTime := getClaims(claims)

3 t := jwt.NewWithClaims(jwt.SigningMethodHs256, claims)

4 s, err := t.SignedString(jwtSecret)

5

6 return s, expirationTime, err

7 }

To validate the tokens and obtain the claims, there is a parse function (see Listing 6.3).
This function takes the secret to validate the token and the token itself and returns
whether the token was valid and, if so, the claims it contains.

Listing 6.3: Parse JWTs in Go

1 func Parse(jwtSecret []byte, tokenString string) (*JWTClaims, error) {

2 token, err := jwt.ParseWithClaims(tokenString, &JWTClaims{}, ...)

3

4 //...(handle error)

5

6 return token.Claims, nil

7 }

6.2.2 Authorization

To implement the Auth Policy service, an open source tool is used to evaluate whether
the user should have access to certain GraphQL endpoints and fields. There are several
existing open source tools for access control, based on an Internet search the following
were selected for further investigation: Open Policy Agent (OPA) [Clo24d], Casbin
[Cas24b], Keto [Ory24a], and Oso [Oso24b].

Since the open source version of Oso has been deprecated (no new features will be added
and the software may be discontinued in the near future) in December 2023 [Oso24a], it
is not a suitable option to use for a new software. There is still a cloud version available,
but since the software should be hosted on-premises [Q6], this is not a viable option.

Keto is part of an ecosystem called Ory [Ory24c], which provides solutions for user
management, authorization, access control, etc. In order to work securely, Keto needs a
comparable API gateway, such as Ory Oathkeeper, since this application already uses

51

6 Implementation

GraphQl Mesh as an API gateway, which is not a comparable API gateway, this tool
cannot be used for this application. [Ory24b]

The main differences between Open Policy Agent (OPA) and Casbian are that Casbian is
limited to supported access control models, while OPA only provides a policy language
that allows the user to create any access control model, or even policies that have
nothing to do with access control. This makes Casbian easier to implement and learn.
Another difference is that OPA provides two ways to use it, in library mode or as an
external service that can be called via REST, while Casbian only provides a library
mode. Because of the higher flexibility and the option to run it as an external service,
OPA was chosen for the implementation of the Auth Policy service. [Clo24c, Cas24a]

Open Policy Agent (OPA) is a policy engine that provides a declarative language for
specifying policies as code and an API for querying them. In this way, OPA decouples
policy decision-making from policy enforcement. To make a policy decision, a service
queries OPA with some input data, while OPA then evaluates that input against the
policies and stored data. The result of the evaluation is then returned to the service,
which can then act on it (see Figure 6.1). [Clo24c]

Decision

OPA

Query

Service

Policy

Data

Figure 6.1: OPA Usage (based on [Clo24c])

OPA uses the rego language to define policies. Rego is a query language that allows
policies to be defined that enumerate instances of data that are inconsistent with an
expected system state. An example rego file implementing role-based authentication is
shown in Listing 6.4. In this example, OPA has data that provides information about
which user has which roles and which roles can access which object. So the service that
wants to check authentication simply sends a query with the current user, the action
the user wants to perform and the object on which the action is to be performed, and
can check the allow variable in the OPA response. The rego definition simply loops
through the stored roles and permissions and checks that the current permissions for
the object match the existing ones. [Clo24c]

52

6.3 Data Storage

Listing 6.4: Role-based Access Control Example [Clo24c]

1 package rbac.authz

2

3 import rego.v1

4

5 # ...

6

7 # logic that implements RBAC.

8 default allow := false

9 allow if {

10 # lookup the list of roles for the user

11 roles := user_roles[input.user]

12 # for each role in that list

13 r := roles[_]

14 # lookup the permissions list for role r

15 permissions := role_permissions[r]

16 # for each permission

17 p := permissions[_]

18 # check if the permission granted to r matches the users request

19 p == {"action": input.action, "object": input.object}

20 }

6.3 Data Storage

To implement the Operator service, an existing database solution is used. Based on
an Internet search, the following database solutions are considered: Apache Cassandra
[The24a], ArangoDB [Ara24], CouchDB [The24d], MariaDB/MySQL [Mar24, Ora24],
PostgreSQL [The24g] and SQLite [SQL24].

The database systems Apache Cassandra, ArangoDB and CouchDB are NoSQL data-
bases, as the data that needs to be stored is structured and does not produce a very
large amount of data, this database type does not offer any major advantage, but several
disadvantages, as no relationships exist between the data. So these databases are not
considered for the future. [The24a, Ara24, The24d]

SQLite is a lightweight database that is often used to store data for a single application,
but not for large multiservice applications that use this database [SQL24]. It is therefore
not suitable for this use case. In comparison, between PostgreSQL and MariaDB/MySQL,
the former database performs better with large amounts of data and more complex SQL
queries [EDB24]. PostgreSQL was therefore selected as the database for implementing
the Operator service.

53

6 Implementation

To generate an API for the database, the GraphQL Mesh API gateway described above
is used, as it already provides the ability to generate a GraphQL API from a PostgreSQL
database using Postgraphile. To improve the performance of complex operations, it
allows the definition of custom functions at the database level, which also generate API
endpoints. For example, if the user wanted to insert multiple records into the same
table, the function shown in Listing 6.5 could be used.

Listing 6.5: Custom API Function Example [Pos24]

1 CREATE FUNCTION app_public.create_documents(num integer, type text,

location text)

2 RETURNS SETOF app_public.document

3 AS $$

4 INSERT INTO app_public.document (type, location)

5 SELECT create_documents.type, create_documents.location

6 FROM generate_series(1, num) i

7 RETURNING *;

8 $$ LANGUAGE sql STRICT VOLATILE;

6.4 Analyze

6.4.1 Calculations

Message Broker

There are many message broker implementations such as Redis [Red24], NATS [Clo24b],
Apache Kafka [Apa24], and RabbitMQ [Bro24a], all of which have their advantages and
disadvantages. For the use case described in the concept, all of them could be used.
Based on the developers’ experience, NATS was used as the message broker.

NATS is an open source data layer, which provides publish and subscribe functionality
for event based architectures. For persistent event queues, NATS provides something
called JetStream. It allows the creation of multiple streams with multiple subjects
where clients can publish or subscribe to events, which are called messages in NATS.
Streams in NATS provide a way to organize events into groups. Each stream can contain
multiple subjects, which allows future grouping of events. This makes it possible for
a client to listen to all events from a stream or just events from some subjects in the
stream. When configured this way, all events are persistent and are only deleted when
they have been processed. A client can acknowledge a message, which tells NATS that
the message has been processed and can be deleted. [Clo24b]

54

6.4 Analyze

NATS provides specialized libraries for many programming languages, including a go
library [Clo24a] used by the calculations services. To publish or subscribe to events, a
connection to the NATS server must be established (see Listing 6.6). This connection
can then be used to create streams and publish or subscribe to events. To use the
JetStream described above, a new JetStream object has to be created from the NATS
connection.

Listing 6.6: Create a NATS Connection

1 func Connect(url string) (jetstream.JetStream, error) {

2 nc, err := nats.Connect(url)

3 //...(handle error)

4 js, err := jetstream.New(nc)

5 //...(handle error)

6 return js, nil

7 }

Scheduler

The Scheduler service is, similar to the Auth service implemented in the go programming
language. Once started, it always listens for data change events in NATS. When it
receives changes, it uses the changes and the job information from the database to
calculate which jobs should be executed. These jobs are then published as an event in a
different subject (see Listing 6.7).

Listing 6.7: Process Changes

1 func ProcessAllMessages(js ..., sourceSubject ..., targetSubject ...){

2 consumer := createConsumer(sourceSubject)

3

4 for {

5 changes := FetchAllChanges(consumer)

6 jobs := TransformChanges(changes)

7 PublishJobs(js, targetSubject, jobs)

8 }

9 }

Since the concept requires the scheduler to group multiple changes that occur close
together for performance reasons, a custom function is implemented to do this (see
Listing 6.8). This function retrieves the maximum number of events that should be
grouped together. Since this number is not always reached, it has a timeout that allows
it to fetch only the number of events that are present in the subject.

55

6 Implementation

Listing 6.8: Fetch all Changes

1 func FetchAllChanges(consumer ...){

2 messages, err := consumer.fetch(

3 MAX_BATCH_SIZE,

4 jetstream.FetchMaxWait(MAX_WAITING_TIME)

5)

6 //...(handle error)

7

8 return MessagesToChanges(messages), nil

9 }

Since the NATS client does not provide a function to publish multiple events, Listing
6.9 shows a custom function to do this. It publishes all events asynchronously and waits
for them all.

Listing 6.9: Publish Jobs

1 func PublishJobs(js ..., subject string, jobs Jobs) {

2 for _, job := range jobs {

3 js.PublishAsync(subject, JobToMsg(job))

4 }

5 <-js.PublishAsyncComplete()

6 }

Worker

The Worker service is also implemented as a go service, waiting for job events published
by the Scheduler service. When it receives a job, it looks up the job configuration from
the database, and if the configuration requires additional data, it also fetches that data
from the Data Storage (Core) service. It then executes the job and writes the result
back to the Data Storage (Core) service (see Listing 6.10).

Listing 6.10: Consume Jobs

1 func ConsumeJobs(subject string) {

2 for {

3 jobEvent := FetchJob(subject)

4 job := GetJob(jobEvent.jobId)

5 additionalData := AdditionalData{}

6

7 if job.fetch {

8 additionalData = FetchAdditonalData(job)

9 }

10

11 WriteData(job.Configuration, jobEvent.Changes, additionalData)

56

6.4 Analyze

12 result, err := ExecuteJob(job.image)

13 //...(handle error)

14 WriteResult(result)

15 }

16 }

To run the job, the Docker container runtime is used. To interact with Docker, it
provides a go library [Mob24] that is used by this service. Listing 6.11 shows the
function that uses this library to spawn a container and wait until it is finished. In
order to spawn the container, it must first pull the image of the job. It then cleans up
the container and retrieves the results from the predefined file.

Listing 6.11: Execute Jobs

1 func ExecuteJob(image string) (Result, error){

2 client, err := client.NewClientWithOpts(...)

3 //...(handle error)

4 _, err := client.ImagePull(..., image)

5 //...(handle error)

6 container, err := client.ContainerCreate(...)

7 //...(handle error)

8

9 err = client.ContainerStart(..., container.ID, ...)

10 //...(handle error)

11 status, errChannel := client.ContainerWait(..., container.ID, ...)

12 select {

13 case err = <-errChannel:

14 //...(handle error)

15 case <-status:

16 }

17 client.ContainerRemove(..., container.ID, ...)

18

19 return GetResult(container.ID), nil

20 }

Runner

As the concept describes, the runner could be implemented in any programming language,
it just needs to be executable via Docker. Since, as described in the concept, the
configuration of the task and the data and result are passed via files, the program
needs to know where to find these files and where to write the output file. To do this,
the Worker service passes the location of the configuration file to the container as a
command line argument. This configuration file then contains the location of the data
file and the location where the result file should be written. Listing 6.12 shows an

57

6 Implementation

example implementation of a runner written in go that reads the data, divides the
values by two, and writes them back as the result.

Listing 6.12: Runner Example

1 func main() {

2 configPath := os.Args[1]

3 //...(handle error)

4 config := LoadConfig(configPath)

5 data := LoadData(config)

6 for idx, d := range data {

7 data[idx] := d / 2

8 }

9 WriteData(config, data)

10 }

In order to use this application as a runner, a docker image is required, and a Dockerfile
can be used to create this image. Listing 6.13 shows this Dockerfile, which copies the
source code, builds the runner, and configures docker to run it. Docker can then be
used to create the image, which can then be used in the job configuration.

Listing 6.13: Runner Dockerfile

1 FROM golang:1.22.5-alpine3.20

2

3 WORKDIR /app

4

5 COPY . .

6 RUN go build -o ./example-runner

7

8 CMD ["./example-runner"]

6.4.2 Visualization

The application for viewing and configuring analytics is built as a web application. This
makes it easier for all users in the company to access, since it does not need to be
installed. It is easy to update and works on all devices and operating systems. [Tai08]
Due to the experience of the developers, the web application is developed using the
TypeScript [Mic24a] programming language and the React [Met24a] framework.

TypeScript is a programming language that extends the JavaScript programming
language. The biggest advantage over JavaScript is that TypeScript brings a type
system with it. Since web browsers cannot execute TypeScript code, it is compiled back
to JavaScript before execution in order to use it for web applications. [Gol22]

58

6.4 Analyze

React is a framework that aims to simplify web development. It allows the developer
to create small reusable parts of the web application, called components. These
components are defined using a special syntax called JSX (or TSX for TypeScript),
which allows the combination of HTML and JavaScript/TypeScript code to specify
the user interface (see Listing 6.14). In this syntax, regular HTML elements or other
React components (starting with an uppercase letter) can be used in combination with
JavaScript/TypeScript code. To pass information between components, props can be
passed to a component. [Rip23]

Listing 6.14: React Component Example

1 interface TestComponentProps {

2 text: string;

3 }

4

5 const TestComponent: React.FC<TestComponentProps> = ({ text }) => {

6 return (

7 <div>

8 {text.toUpperCase()}

9 <OtherComponent />

10 </div>

11);

12 };

The next sections describe how to implement reports, views, and diagrams, as these
are the most interesting parts of the web application. The next section describes a
component that will be used in several examples, followed by an explanation of how
data retrieval for reports/views works. Finally, the implementation for defining diagram
and filter types is described.

Dynamic Inputs

Since the application often needs to define input masks with similar inputs, a dynamic
input component was developed. This component allows easy definition of inputs, input
validation, etc. without the need for much coding. The component takes a list of objects
defining the required inputs and, based on these inputs, generates a corresponding
output object containing all values entered by the user (see Listing 6.15 for an example).

Listing 6.15: Dynamic Input Definition Example

1 // Input definition

2 const inputs = [

3 {

4 id: "name",

5 type: "textField",

59

6 Implementation

6 props: {

7 label: "Name",

8 },

9 required: true,

10 hasError: (currentValues) => ...

11 showIf: (currentValeus) => ...

12 },

13 //...

14];

15

16 // Example Output

17 {

18 name: "Max"

19 }

The input definition contains an ID, which defines the field where the output is written,
and a type, defining which input element is rendered, e.g. textField for a simple text
input field, or select for a selection box. To customize the rendering of the input element
etc. it is also possible to define type specific props. To validate the input, two properties
can be specified. If the value is required, an error will occur if the user leaves the
input blank. The other properties allow the developer to specify a custom function
that takes all current values and returns nothing or an error message to be shown
to the user, allowing custom validation of the value. To define when an input field
should be displayed, the developer can specify a custom showIf function that takes the
current values and returns whether the input should be displayed. This can be used to
show inputs only when other inputs have certain values. The implementation of the
component ensures that these functions are re-validated when an input changes, so that
the inputs are displayed as intended.

To render the input definitions, there is a React component (see Listing 6.16). In order
to store the input values and detect changes, React needs a state to store them. This
state is a special variable that allows React to detect changes. Since React can only
pass properties to child components and not the other way around, this state must be
defined in the component using the DynamicInput. Because this component needs the
output of the values for further use.

Listing 6.16: DynamicInput Implementation

1 const inputTypes: ... = {

2 textField: DynamicInputTextField,

3 //...

4 };

5

6 const DynamicInput: ... = ({inputs, state, onChange}) => {

7 return (

8 <>

60

6.4 Analyze

9 {inputs.map((input) => {

10 const InputElement = inputTypes[input.type];

11 //...

12

13 return (

14 <InputElement ... />

15);

16 })}

17 </>

18);

19 };

Listing 6.17 shows an example of using the component. A special function, called a
hook in React, is used to get the state etc. for the component. This function takes the
input definition and returns all the properties that the DynamicInput component needs.
It also handles input changes, input validation, etc. It also returns the output values
and if they are valid.

Listing 6.17: DynamicInput Usage

1 const DynamicInputUsage: React.FC<DynamicInputUsageProps> = () => {

2 const { props, output, isValid } = useDynamicInput(inputs);

3

4 return (

5 <div>

6 <DynamicInput {...props} />

7 {/*Show Output: */ JSON.stringify(output)}

8 {/*Show if Input is valid: */ isValid}

9 </div>

10);

11 };

Data Access

Reports and views are implemented with their own React components. To reduce
complexity and improve performance, the report (or view if it is rendered separately)
should handle the data fetching for the backend to render its diagram(s). To do this,
they should check which columns the diagrams need and combine them all, as multiple
diagrams may need the same data. More on how the diagrams define which columns
they need in the following section.

61

6 Implementation

Diagrams

A generic approach is used to implement the diagrams types that can be displayed in
a view, making it easier to add new diagram types [Q4]. To achieve this, there is an
abstract base DiagramType class that defines the variables/functions that a diagram
must implement in order to work. All diagram types must then implement this abstract
class (see Figure 6.2). To explain the parts of the DiagramType class, the following
sections show parts of this class with an example implementation.

Diagram

Diagram Type 1 Diagram Type 2 Diagram Type x

Diagram Merge
Group

Diagram Merge
Group 1

Figure 6.2: Diagram Classes

For implementation examples, a TextDiagram type is used. This TextDiagram type
should render the given data into a prepared Markdown text (see Figure 6.3). To insert
the data into the text, it should be possible to select the data keys with template strings.

text: “This is a **markdown** text
that contains data: {title}.”

title: “Building a modular and scalable
data-driven analytics platform.”

Configuration

This is a markdown text that contains data:
Building a modular and scalable data-driven
analytics platform.

Data

Figure 6.3: TextDiagram Example

62

6.4 Analyze

Diagram Type Basic Settings

The DiagramType class (see Listing 6.18) has a name, a description, and an icon that
is used to render the diagram type selector where the user can choose the type of the
current diagram.

Listing 6.18: Abstract DiagramType Class

1 abstract class DiagramType<Configuration> {

2 abstract name: string

3 abstract description: string

4 abstract icon: Icon

5 //...

Diagram Type Configuration

To allow the user to change diagram-specific configurations, the DiagramType contains
input definitions that are rendered when the diagram is edited. These input definitions
are defined using the dynamic input definition described above (section 6.4.2). The class
also contains a generic type parameter for the configuration, which must be provided by
the implementation to define which configuration options are available.

Listing 6.19: abstract DiagramType Class

1 abstract class DiagramType<Configuration> {

2 //...

3 abstract configurationInputs: DiagramConfigurationInput[]

4 //...

The Listing 6.20 shows a sample implementation for configuring the TextDiagram class.
It first defines the interface for the possible configurations and then an array with the
input definitions to change these configurations.

Listing 6.20: TextDiagram Configuration

1 interface TextDiagramConfiguration {

2 text: string

3 }

4

5 class TextDiagram extends DiagramType<TextDiagramConfiguration> {

6 //...

7 configuration = [{

8 id: "text",

9 type: "textField",

10 props: {

11 label: "Text to Display"

63

6 Implementation

12 }

13 }]

14 //...

Diagram Type Component

To render the diagram type, it must specify a React component which is rendered
when the diagram is displayed. This component should follow a standardized interface
(DiagramTypeComponent) that defines the properties of this component (see Listing
6.21). The properties include the data to be rendered and the current configuration.
So the component itself should not care about how to fetch the data etc., this is all
abstracted by the implementation that renders the diagrams.

Listing 6.21: Abstract DiagramType class

1 // DiagramType.ts

2 abstract class DiagramType<Configuration> {

3 //...

4 abstract component: React.FC<DiagramTypeComponent<Configuration>>

5 //...

6

7 // DiagramTypeComponent.ts

8 interface DiagramTypeComponent<Configuration> {

9 data: Record<string, unknown>[]

10 configuration: Configuration

11 }

Listing 6.22 shows the sample implementation of the TextDiagram component, which
should be placed in a separate file for better readability. The sample component first
retrieves the data and text to render from the props. It then inserts the data into the
text by replacing predefined template strings. Finally, it passes the text to a Markdown
renderer, which renders the text.

Listing 6.22: Example TextDiagram Component

1 // TextDiagram.ts

2 class TextDiagram extends DiagramType<TextDiagramConfiguration> {

3 //...

4 component: TextDiagramComponent

5 //...

6

7 // TextDiagramComponent.tsx

8 export const TextDiagramComponent:

9 React.FC<DiagramTypeComponent<Configuration>> = ({

10 configuration,

64

6.4 Analyze

11 data,

12 }) => {

13 const text = replaceTemplates(configuration.text, data)

14

15 return <MarkdownRenderer text={text} />;

16 };

Diagram Merge Group

As the concept describes, it should be possible to merge multiple diagrams into one. To
implement this, an optional MergeGroup can be specified to determine if the diagram
can be merged and to render the merged diagram (see Listing 6.23). The application
prevents the user from creating multiple diagrams in a single view without a merge
group or with different merge groups. Thus, if two diagrams have the same merge group,
that group is used to render the diagrams, rather than the component of the diagram.

Listing 6.23: Abstract DiagramType Class

1 abstract class DiagramType<Configuration> {

2 //...

3 mergeGroup: string | undefined = undefined

4 //...

The MergeGroup class itself defines a component that is used to render this MergeGroup
(see Listing 6.24). This component then gets all the diagrams with their configuration
and the fetched data. This can be done by using the original diagram classes to render
them and display them on top of each other, for example, or by completely defining the
component itself.

Listing 6.24: MergeGroup Class

1 // MergeGroup.ts

2 abstract class MergeGroup {

3 abstract component: React.FC<MergeGroupComponentProps>

4 }

5

6 // MergeGroupComponentProps.ts

7 interface MergeGroupDiagram {

8 type: string,

9 renderComponent: (data: Record<string, unknown>[]) => JSX.Element;

10 configuration: Configuration

11 }

12

13 interface MergeGroupComponentProps {

14 data: Record<string, unknown>[]

65

6 Implementation

15 diagrams: MergeGroupDiagram[]

16 }

Since merging a TextDiagram does not make much sense, the example used for the
merge group is to merge multiple ChartDiagrams, such as bar chart and line chart
diagrams (see Figure 6.4).

Merge Group

Diagram 1

View

Diagram 2

Figure 6.4: Merging Multiple Charts

To do this, the ChartMergeGroup component renders all the charts on top of each other
to create a unified chart (see listing 6.25). It uses the components defined by the chart
diagram types and CSS to place them on top of each other (for simplicity, the full CSS
definitions for this are not shown in the example).

Listing 6.25: MergeGroup Example

1 // ChartMergeGroup.ts

2 class ChartMergeGroup {

3 component = ChartMergeGroupComponent

4 }

5

6 // ChartMergeGroupComponent.tsx

7 const ChartMergeGroupComponent: React.FC<MergeGroupComponentProps> = ({

8 diagrams,

9 data,

10 }) => {

11 return (

12 <div className="renderOnTopGroup">

66

6.4 Analyze

13 {diagrams.map((d) => (

14 <div className="renderOnTopComponent">

15 {d.renderComponent(data)}

16 </div>

17))}

18 </div>

19);

20 };

Columns Used in the Diagram

Since the diagram itself should not care about fetching data, it must implement a
function that returns all columns that should be fetched from the backend (see Listing
6.26). This cannot be done generally because this information is dynamic and determined
by the configuration.

Listing 6.26: Abstract DiagramType Class

1 abstract class DiagramType<Configuration> {

2 //...

3 abstract getUsedColumns(configuration: Configuration): string[]

4 }

The example implementation is shown in Listing 6.27. It extracts the string templates
from the text and returns them since they represent the columns needed by this diagram.

Listing 6.27: Example getUsedColumns Implementation

1 class TextDiagram extends DiagramType<TextDiagramConfiguration> {

2 //...

3 getUsedColumns(configuration: TextDiagramConfiguration): string[] {

4 return getTemplateStrings(configuration.text)

5 }

6 }

Register Diagram Types

Since the application needs to know what diagram types exist and find their configu-
rations, diagram types must be registered. For that, all types are defined in a global
record with their ID as key and the class as value, as shown in the Listing 6.28. To
register a merge group, there is a similar record with the merge groups.

67

6 Implementation

Listing 6.28: Register a Diagram Type or Merge Group

1 export const diagramTypes: Record<string, DiagramType> = {

2 textDiagram: TextDiagram,

3 //...

4 }

5

6 export const megeGorups: Record<string, MergeGroup> = {

7 chartMergeGroup: ChartMergeGroup,

8 //...

9 }

Filter

Similar to the diagram implementation, the filters’ implementation uses a generic
approach. There is an abstract base filter class that defines the functions/variables
needed for a filter, which can then be implemented by the specific filter classes (see
Figure 6.5).

Filter

Filter Type 1 Filter Type 2 Filter Type x...
Figure 6.5: Filter Classes

For implementation examples a TextFilter is used. The TextFilter should render a text
box that allows the user to enter any text that will be used to filter the data. For type
selection, the filter class should contain basic information such as a name, description,
and icon (see Listing 6.29).

Listing 6.29: Abstract Filter Class

1 abstract class Filter<Configuration> {

2 abstract name: string

3 abstract description: string

68

6.4 Analyze

4 abstract icon: Icon

5 //...

To configure the filter upon creation, the filter should define the input files that should
be rendered for filter-specific configurations and the matchTypes. This can also be done
using the dynamic input definition described above (section 6.4.2). The matchTypes
define how the filter values should be compared, as described in the concept, the filter
class defines the allowed match types as an object with an ID and a label. These are
then displayed in a select field when the filter is created.

Listing 6.30: Abstract Filter Class

1 //...

2 abstract configuration: FilterConfigurationInput[]

3 abstract matchTypes: FilterMatchTypes[]

4 //...

A sample implementation of the TextFilter is shown in Figure 6.31. It defines a
configuration to specify the label to be displayed when the filter is rendered. It also
defines the match type equals, which checks for complete equality.

Listing 6.31: Example TextFilter Class

1 class TextFilter extends Filter<TextFilterConfiguration> {

2 //...

3 configuration = [

4 {

5 id: "label",

6 type: "textField",

7 props: {

8 label: "Label of the Filter",

9 },

10 },

11];

12 matchTypes = [

13 {

14 id: "equals",

15 label: "Equals",

16 },

17 /...

18];

19 //...

The Dynamic Inputs configuration is also used to define the component that renders
the filter (see Listing 6.32). But instead of a list of inputs, it defines only a single input.
Since not all the information needed for the dynamic input is available when defining

69

6 Implementation

the filter type, such as the input’s ID, this information can be omitted. This information
is added when the filter is rendered, and all filters from a report are combined into a
single dynamic input. The previously described filter-specific configurations are also
inserted as properties of the dynamic input, so that they can be used to customize the
rendered filter.

Listing 6.32: Abstract Filter class

1 //...

2 abstract component: FilterConfigurationInput

3 }

The sample implementation for the TextFilter component, shown in Figure 6.31, contains
only one type of input, since all other information is inserted via the filter-specific
configuration options.

Listing 6.33: Example TextFilter Class

1 class TextFilter extends Filter<TextFilterConfiguration> {

2 //...

3 component = {

4 type: "textField"

5 };

6 }

70

7 Evaluation

The Architecture Analysis Method (SAAM) by Kazman et al. [Kaz96], which uses
scenarios to evaluate software architectures, is used to evaluate the proposed concept.
SAAM has five steps for evaluating an architecture. First, the architecture of the system
should be described, which was done in the previous chapter. Secondly, scenarios are
created that illustrate all types of system activities or future activities. The third step
is to evaluate the scenarios. For each scenario, it is determined whether the architecture
can execute it directly or whether a change is needed (indirectly). For indirect scenarios,
the required changes and their costs are identified. The fourth step is to determine the
number of indirect scenarios that affect the same service, called interactions. SAAM
favors architectures with the fewest scenario conflicts. The final step includes an overall
evaluation that weights the different scenarios and interactions to calculate an overall
ranking. [Kaz96]

The scenarios were developed by employees of the energy supplier. They have been
created for two roles, the normal users who use the graphical user interface and the
administrators. The scenarios with their direct or indirect assessment and potential
changes are listed in Table 7.1 and Table 7.2. As the tables show, 78% of the scenarios
can be handled directly with the current approach, and only four require system changes.

Description Direct Changes
1 Addition of a new user to the sys-

tem.
✓

2 Addition of a new system user to
the system.

✓

3 Change a user’s permissions. ✓

4 Add a new runner to the system. ✓

5 Add a new single sign-on login
method.

✗ To add a new SSO login method,
the Auth service must be modified.

6 Connect a new external system to
the application.

✓

Table 7.1: SAAM Scenarios (administrators)

71

7 Evaluation

Description Direct Changes
1 View stored data in a table. ✓

2 Visualize stored data in a diagram. ✓

3 Visualize stored data in a diagram
type that is not included in the
diagram type selection.

✗ To add a new diagram type, the
service Analysis must be modified
by adding the new diagram type.

4 Display of a table with a diagram. ✓

5 Export the displayed data to a
CSV file.

✓

6 Filter the data displayed in a re-
port.

✓

7 Reuse views from one report on
another report.

✓

8 Share a report with a co-worker. ✓

9 Display data from several tables in
a single view.

✓

10 Calculate metrics based on data
changes.

✓

11 Calculate metrics with a non-
existent runner based on data
changes.

✗ To calculate new metrics for a non
existent runner, a new runner must
be programmed to perform the cal-
culation.

12 Receive notifications of erroneous
or missing values.

✗ To send notifications for erroneous
or missing values, the Analysis ser-
vice must be modified to configure
the notifications, and the Sched-
uler must be modified to detect
and send them.

Table 7.2: SAAM Scenarios (users)

The interactions and number of changes between indirect scenarios and services are
shown in Table 7.3. Only one in ten services is affected by interactions, and only three
services and a new runner require changes to fulfill all scenarios. Since Kazman et al.
[Kaz96] flavor architectures with few conflicts, this is a reasonable result.

Service Number of Changes Interactions
Analysis 2 1
Scheduler 1 -

Auth 1 -
Runner 1 -

Table 7.3: SAAM Scenario Interactions

72

The evaluation shows that the concept can fulfill most of the scenarios without any
changes. Only four changes were required, with only a single intersection created. The
service with the most changes is the Analysis service. The limitation is that new chart
types cannot be added to this service without code changes, which would then require a
software update to deliver these changes. The other limitation is that it is not possible
to configure alerts or notifications.

The other two services with only one change are the Scheduler service and the Auth
service. This is because the Scheduler service does not have the ability to monitor
changes for notifications. And if a new SSO provider is required, the Auth service must
be adopted. The other service that requires changes is the runner, which does not
directly require changes to an existing service, but may require the addition of a new
service.

The two main limitations are that the Analysis and Scheduler services are limited
to notifications and that it is not possible to add new chart types more easily. The
limitation of the Auth service is not so important as it is not often necessary to add a
new SSO provider. And even if it were needed more often, the Auth service could be
built to make this change easier. The runner limitation is also not very important, as
this limitation is intended to give the source system more flexibility. Since a graphical
interface to create all kinds of calculations would be very complex, making it unusable
for a normal user, or incomplete. This limitation is further reduced by the runner
configuration options described in the concept, as this also allows generic runners to
calculate multiple tasks without code changes.

73

8 Conclusion

8.1 Discussion

In order to achieve the objective of creating a concept from an analytics platform with
complex requirements, a number of requirements were first derived. These requirements
are based on the reference system of a local energy supplier and existing analytics
platforms. The existing systems were then evaluated, with the result that none of
them could fulfill the requirements, or only with too many limitations or high costs.
Subsequently, the relevant literature was presented and the concept and ideas were
derived from it, which were later considered for the concept. The concept was then
presented, consisting of a service-based architecture with ten services. To make the
platform usable by non-technical people, this includes an application that allows reports
and measures to be created using a low-code approach. This includes reports for viewing
and analyzing data, pages for creating data abstractions, and user and configuration
settings for calculating metrics. In order to provide full customization for complex
metrics, a special subsystem called Calculations has been proposed. This subsystem
detects data changes and uses a container runtime to calculate the new metrics with
custom code. Then, the challenging parts of the local utility’s reference implementation
are described. This includes software choices for services that can be implemented by
an existing system and implementation details of some services. Finally, an evaluation
based on the SAAM module using scenarios was conducted.

As this evaluation shows that the concept fulfills most of the scenarios with only a few
limitations, these limitations are presented in the next section. The concept allows
companies to develop an analytics platform for complex use cases. Which can be used
by non-technical people. It is scalable and modular and uses open source components
to reduce development costs. The concept is very flexible and allows all kinds of
reports/dashboards and metrics to be calculated. The metrics calculation also includes
machine learning algorithms, making it future-proof as they are increasingly used in the
analytics context. This thesis also includes implementation hints and software choices
for some services, allowing easier adoption and implementation of the proposed concept.

75

8 Conclusion

8.2 Limitations and Future Research

As discovered in Chapter 7, the main limitations of the concept lie in the Analysis and
Scheduler services. For the Analysis service, one limitation is that diagram types cannot
be added without code changes and re-deployment of the application. However, this
is not so serious because the modularity shown in the implementation chapter makes
it very easy to add new diagram types in the source code, and this is also possible
without extensive knowledge of the entire application. To overcome this limitation,
future research could consider creating a diagram type builder UI that allows dynamic
code to be added, or a plugin system that allows the diagram types to be extended
dynamically at runtime. Another limitation and future research point is to allow the
application to monitor changes for notifications of problems etc. This should be easy to
incorporate into the system as changes are already detached, and it would only require
a page to configure the notifications and changes to the Scheduler service which checks
the conditions and sends the notifications.

76

Bibliography

[Aci14] Acito, Frank and Khatri, Vijay: Business analytics: Why now and what
next? Business Horizons (2014), vol. 57(5):pp. 565–570

[Ama24] Amazon Web Services, Inc.: AWS Website (2024), URL https://

aws.amazon.com, accessed: 03-08-2024
[Amp24] Amplitude Inc.: Everything You Need to Know About Data Analytics

Platforms (2024), URL https://amplitude.com/explore/data/

data-analytics-platform#what-data-analytics-platform,
accessed: 06-08-2024

[AN15] Al Nuaimi, Eiman; Al Neyadi, Hind; Mohamed, Nader and Al-Jaroodi,
Jameela: Applications of big data to smart cities. Journal of Internet
Services and Applications (2015), vol. 6(1)

[Ana20] Anagnostopoulos, Achilleas: Hands-On Software Engineering with Golang,
Packt Publishing, Limited, Birmingham (2020)

[Apa24] Apache Software Foundation: Apache Kafka Website (2024), URL
https://kafka.apache.org, accessed: 28-07-2024

[Apo24a] Apollo Graph Inc.: Apollo Client (2024), URL https://

www.apollographql.com/docs/react, accessed: 02-08-2024
[Apo24b] Apollo Graph Inc.: Apollo Server (2024), URL https://

www.apollographql.com/docs/apollo-server, accessed: 02-08-
2024

[Ara24] ArangoDB: ArangoDB Website (2024), URL https://arangodb.com,
accessed: 24-07-2024

[Ave23] Aveiro, David; Mendes, João; Pinto, Duarte and Freitas, Vítor: A
Comparative Analysis of Open-Source Business Intelligence Platforms for
Integration with a Low-Code Platform, in: International Conference on
Information Systems Development, ISD 2023, Instituto Superior Técnico

[Ben06] Benantar, Messaoud (Editor): Access Control Systems, SpringerLink,
Springer Science+Business Media, Inc, Boston, MA (2006)

[Ben10] Benlian, Alexander and Hess, Thomas: Comparing the relative importance
of evaluation criteria in proprietary and open-source enterprise application
software selection - a conjoint study of ERP and Office systems: Comparing
evaluation criteria for proprietary and OS EAS. Information Systems
Journal (2010), vol. 21(6):pp. 503–525

77

https://aws.amazon.com
https://aws.amazon.com
https://amplitude.com/explore/data/data-analytics-platform#what-data-analytics-platform
https://amplitude.com/explore/data/data-analytics-platform#what-data-analytics-platform
https://kafka.apache.org
https://www.apollographql.com/docs/react
https://www.apollographql.com/docs/react
https://www.apollographql.com/docs/apollo-server
https://www.apollographql.com/docs/apollo-server
https://arangodb.com

Bibliography

[Boc21] Bock, Alexander C. and Frank, Ulrich: Low-Code Platform. Business
Information Systems Engineering (2021), vol. 63(6):pp. 733–740

[Bos09] Bose, Ranjit: Advanced analytics: opportunities and challenges. Industrial
Management Data Systems (2009), vol. 109(2):pp. 155–172

[Bri20] Brito, Gleison and Valente, Marco Tulio: REST vs GraphQL: A Con-
trolled Experiment, in: 2020 IEEE International Conference on Software
Architecture (ICSA), IEEE

[Bro14] Brown, Simon: Software Architecture for Developers, Software Design &
Development Conference 2014 (2014)

[Bro24a] Broadcom: RabbitMQ Website (2024), URL https://

www.rabbitmq.com/, accessed: 05-07-2024
[Bro24b] Brown, Simon: The C4 model for visualising software architecture (2024),

URL https://c4model.com/, accessed: 06-03-2024
[Cas24a] Casbin Organisation: Casbin Documentation (2024), URL https://

casbin.org/docs, accessed: 24-07-2024
[Cas24b] Casbin Organisation: Casbin Website (2024), URL https://

casbin.org, accessed: 24-07-2024
[Cha21] Chapple, Mike: Access control and identity management, Information sys-

tems security & assurance series, Jones & Bartlett Learning, Burlington,
MA, 3rd edn. (2021), revision of: Access control, authentication, and
public key infrastructure / Bill Ballad, Tricia Ballad, and Erin K. Banks.
2014

[Cho18] Choi, Tsan-Ming; Wallace, Stein W. and Wang, Yulan: Big Data Analytics
in Operations Management. Production and Operations Management
(2018), vol. 27(10):pp. 1868–1883

[Clo24a] Cloud Native Computing Foundation: NATS go client (2024), URL
https://github.com/nats-io/nats.go, accessed: 28-07-2024

[Clo24b] Cloud Native Computing Foundation: NATS Website (2024), URL
https://nats.io, accessed: 28-07-2024

[Clo24c] Cloud Native Computing Foundation: Open Policy Agent Documen-
tation (2024), URL https://www.openpolicyagent.org/docs, ac-
cessed: 20-07-2024

[Clo24d] Cloud Native Computing Foundation: Open Policy Agent Website
(2024), URL https://www.openpolicyagent.org, accessed: 20-07-
2024

[Dat23] Datanyze: Leading containerization technologies market share world-
wide in 2023. Statista (2023), URL https://www.statista.com/

statistics/1256245/containerization-technologies-

software-market-share/

[Dgr24] Dgraph: Dgraphph Website (2024), URL https://dgraph.io/, accessed:
04-07-2024

78

https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://c4model.com/
https://casbin.org/docs
https://casbin.org/docs
https://casbin.org
https://casbin.org
https://github.com/nats-io/nats.go
https://nats.io
https://www.openpolicyagent.org/docs
https://www.openpolicyagent.org
https://www.statista.com/statistics/1256245/containerization-technologies-software-market-share/
https://www.statista.com/statistics/1256245/containerization-technologies-software-market-share/
https://www.statista.com/statistics/1256245/containerization-technologies-software-market-share/
https://dgraph.io/

Bibliography

[Doc24] Docker Inc: Docker Website (2024), URL https://www.docker.com/,
accessed: 06-03-2024

[Dud20] Dudjak, Mario and Martinović, Goran: An API-first methodology for
designing a microservice-based Backend as a Service platform. Information
Technology And Control (2020), vol. 49(2):pp. 206–223

[EDB24] EDB: PostgreSQL vs. MySQL: A 360-degree Comparison (2024),
URL https://www.enterprisedb.com/blog/postgresql-

vs-mysql-360-degree-comparison-syntax-performance-

scalability-and-features, accessed: 07-08-2024
[Eng24] Engineering: Knowage Website (2024), URL https://www.knowage-

suite.com, accessed: 03-08-2024
[Fie00] Fielding, Roy Thomas: Architectural styles and the design of network-based

software architectures, Ph.D. thesis (2000)
[Gar22] Gartner: Low-code development platform market size world-

wide 2024. Statista (2022), URL https://www.statista.com/

statistics/1226179/low-code-development-platform-

market-revenue-global/

[Gol22] Goldberg, Josh: Learning TypeScript, O’Reilly Media, Beijing (2022)
[gol24] golang-jwt maintainers: jwt-go Website (2024), URL https://

github.com/golang-jwt/jwt

[Goo24a] Google LLC: Go Website (2024), URL https://go.dev/, accessed: 19-
07-2024

[Goo24b] Google LLC: Google Cloud Website (2024), URL https://

cloud.google.com, accessed: 03-08-2024
[Gou02] Gourley, David: HTTP, Definitive Guides, O’Reilly Media, Sebastopol

(2002)
[Gou22] Gough, James: Mastering API architecture, O’Reilly, Beijing, 1st edn. (2022)
[Gra24] Gravitee.io: gravitee.io Website (2024), URL https://

www.gravitee.io, accessed: 29-07-2024
[Gun23] Gunklach, Jonas; Jacob, Katharina and Michalczyk, Sven: Beyond Dash-

boards? Designing Data Stories for Effective Use in Business Intelligence
and Analytics

[Hu15] Hu, Vincent C.; Kuhn, D. Richard; Ferraiolo, David F. and Voas, Jeffrey:
Attribute-Based Access Control. Computer (2015), vol. 48(2):pp. 85–88

[Hua23] Huawei Technologies Co., Ltd.: Cloud Computing Technology, Springer,
Singapore, 1st edn. (2023)

[Idc21] Idc and Statista: Volume of data/information created, captured,
copied, and consumed worldwide from 2010 to 2020, with fore-
casts from 2021 to 2025 (in zettabytes) [Graph]. In Statista
(2021), URL https://www.statista.com/statistics/871513/

worldwide-data-created/

79

https://www.docker.com/
https://www.enterprisedb.com/blog/postgresql-vs-mysql-360-degree-comparison-syntax-performance-scalability-and-features
https://www.enterprisedb.com/blog/postgresql-vs-mysql-360-degree-comparison-syntax-performance-scalability-and-features
https://www.enterprisedb.com/blog/postgresql-vs-mysql-360-degree-comparison-syntax-performance-scalability-and-features
https://www.knowage-suite.com
https://www.knowage-suite.com
https://www.statista.com/statistics/1226179/low-code-development-platform-market-revenue-global/
https://www.statista.com/statistics/1226179/low-code-development-platform-market-revenue-global/
https://www.statista.com/statistics/1226179/low-code-development-platform-market-revenue-global/
https://github.com/golang-jwt/jwt
https://github.com/golang-jwt/jwt
https://go.dev/
https://cloud.google.com
https://cloud.google.com
https://www.gravitee.io
https://www.gravitee.io
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/

Bibliography

[Jin18] Jin, Brenda: Designing Web APIs, O’Reilly, Beijing, 1st edn. (2018)
[Kaz96] Kazman, R.; Abowd, G.; Bass, L. and Clements, P.: Scenario-based

analysis of software architecture. IEEE Software (1996), vol. 13(6):pp.
47–55

[Kha22] Khatuwal, Vishnu Singh and Puri, Digvijay: Business Intelligence Tools
for Dashboard Development, in: 2022 3rd International Conference on
Intelligent Engineering and Management (ICIEM), IEEE

[KNI24a] KNIME: KNIME Hub Pricing (2024), URL https://www.knime.com/

knime-hub-pricing, accessed: 04-08-2024
[KNI24b] KNIME: Knime Website (2024), URL https://www.knime.com, accessed:

03-08-2024
[Kon24] Kong Inc.: Kong Website (2024), URL https://konghq.com, accessed:

29-07-2024
[KRA24] KRAKEND S.L.: KrakenD Website (2024), URL https:

//www.krakend.io/, accessed: 29-07-2024
[Law21] Lawi, Armin; Panggabean, Benny L. E. and Yoshida, Takaichi: Evaluating

GraphQL and REST API Services Performance in a Massive and Intensive
Accessible Information System. Computers (2021), vol. 10(11):p. 138

[Lin24] LinceBI: LinceBI Website (2024), URL https://www.lincebi.com, ac-
cessed: 03-08-2024

[Lod24] Lodderstedt, Torsten; Bradley, John; Labunets, Andrey
and Fett, Daniel: OAuth 2.0 Security Best Current Practice,
Internet-draft, Internet Engineering Task Force (2024), URL
https://datatracker.ietf.org/doc/draft-ietf-oauth-

security-topics/29/

[Mad21] Madden, Neil: API Security in Action, Manning Publications, 1st edn.
(2021)

[Mar24] MariaDB Foundation: MariaDB Website (2024), URL https://

mariadb.org/, accessed: 24-07-2024
[Mat22] Matigo: How long can $DISPLAY environment variable value be? (2022),

URL https://askubuntu.com/a/1385554, accessed: 10-08-2024
[Men22] Menon, Pradeep: Data Lakehouse in Action, Packt Publishing Limited,

Birmingham, 1st edn. (2022)
[Met24a] Meta Open Source: React Website (2024), URL https://react.dev/,

accessed: 19-07-2024
[Met24b] Metabase: Metabase Website (2024), URL https://

www.metabase.com/, accessed: 03-08-2024
[Mic24a] Microsoft: TypeScript Website (2024), URL https://

www.typescriptlang.org/, accessed: 19-07-2024
[Mic24b] Microsoft Corporation: Microsoft Azure Website (2024), URL https:

//azure.microsoft.com, accessed: 03-08-2024

80

https://www.knime.com/knime-hub-pricing
https://www.knime.com/knime-hub-pricing
https://www.knime.com
https://konghq.com
https://www.krakend.io/
https://www.krakend.io/
https://www.lincebi.com
https://datatracker.ietf.org/doc/draft-ietf-oauth-security-topics/29/
https://datatracker.ietf.org/doc/draft-ietf-oauth-security-topics/29/
https://mariadb.org/
https://mariadb.org/
https://askubuntu.com/a/1385554
https://react.dev/
https://www.metabase.com/
https://www.metabase.com/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://azure.microsoft.com
https://azure.microsoft.com

Bibliography

[Mob24] Moby Project: Docker go client (2024), URL https://github.com/

moby/moby/tree/master/client, accessed: 28-07-2024
[New15] Newman, Sam: Microservices, mitp Verlags, Germany, 1st edn. (2015),

translation of: Building Microservices, published by O’Reilly Media (2015)
[NKK22] Nyoman Kutha Krisnawijaya, Ngakan; Tekinerdogan, Bedir; Catal,

Cagatay and Tol, Rik van der: Data analytics platforms for agricultural
systems: A systematic literature review. Computers and Electronics in
Agriculture (2022), vol. 195:pp. 106–813

[Ope24] Open Source Initiative: The Open Source Definition (2024), URL https:

//opensource.org/osd, accessed: 01-06-2024
[Ora24] Oracle: MySQL Website (2024), URL https://www.mysql.com, accessed:

24-07-2024
[Ory24a] Ory: Keto Website (2024), URL https://github.com/ory/keto, ac-

cessed: 24-07-2024
[Ory24b] Ory: Ory Self-hosting Documentation (2024), URL https://www.ory.sh/

docs/ecosystem/projects, accessed: 24-07-2024
[Ory24c] Ory: Ory Website (2024), URL https://www.ory.sh/, accessed: 24-07-

2024
[Oso24a] Oso Security, Inc.: Oso Deprecation notice (2024), URL

https://www.osohq.com/docs/oss/getting-started/

deprecation.html, accessed: 24-07-2024
[Oso24b] Oso Security, Inc.: Oso Website (2024), URL https://github.com/

osohq/oso, accessed: 24-07-2024
[Pan06] Pankaj, Pankaj; Hyde, Micki and Rodger, James: Business Dashboards-

Challenges and Recommendations, in: AMCIS 2006 Proceedings, p. 184
[Pel24] Pellekoorne, Timon: Building a Low-Code Platform for versatile Data In-

tegration, Master’s thesis, Technische Hochschule Mittelhessen (University
of Applied Science) (2024)

[Pfl24] Pfleeger, Charles P.: Security in computing, Addison-Wesley, Boston, 6th
edn. (2024)

[Pos23] Postman, Inc.: Postman 2023 State of the API Report (2023), URL https:

//www.postman.com/state-of-api/, accessed: 18-07-2024
[Pos24] PostGraphile: PostGraphile Website (2024), URL https:

//www.graphile.org/postgraphile/, accessed: 07-04-2024
[Rag14] Raghupathi, Wullianallur and Raghupathi, Viju: Big data analytics in

healthcare: promise and potential. Health Information Science and Sys-
tems (2014), vol. 2(1)

[Red24] Redis: Redis Website (2024), URL https://redis.io/, accessed: 28-07-
2024

[Ric20] Richards, Mark: Fundamentals of software architecture, O’Reilly, Beijing,
1st edn. (2020)

81

https://github.com/moby/moby/tree/master/client
https://github.com/moby/moby/tree/master/client
https://opensource.org/osd
https://opensource.org/osd
https://www.mysql.com
https://github.com/ory/keto
https://www.ory.sh/docs/ecosystem/projects
https://www.ory.sh/docs/ecosystem/projects
https://www.ory.sh/
https://www.osohq.com/docs/oss/getting-started/deprecation.html
https://www.osohq.com/docs/oss/getting-started/deprecation.html
https://github.com/osohq/oso
https://github.com/osohq/oso
https://www.postman.com/state-of-api/
https://www.postman.com/state-of-api/
https://www.graphile.org/postgraphile/
https://www.graphile.org/postgraphile/
https://redis.io/

Bibliography

[Rid19] Ridzuan, Fakhitah and Wan Zainon, Wan Mohd Nazmee: A Review
on Data Cleansing Methods for Big Data. Procedia Computer Science
(2019), vol. 161:pp. 731–738, the Fifth Information Systems International
Conference, 23-24 July 2019, Surabaya, Indonesia

[Rip23] Rippon, Carl: Learn React with TypeScript, Packt Publishing Limited, Birm-
ingham, 1st edn. (2023)

[SAP24] SAP Deutschland SE & Co. KG: Sap Website (2024), URL https:

//www.sap.com, accessed: 03-08-2024
[Shr24] Shrivastava, Saurabh: Solutions architect’s handbook, Expert insight, Packt

Publishing Ltd., Birmingham, UK, 3rd edn. (2024)
[Sin14] Singh, Dilpreet and Reddy, Chandan K: A survey on platforms for big data

analytics. Journal of Big Data (2014), vol. 2(1)
[Sno24a] Snowflake Inc.: Snowflake Pricing (2024), URL https:

//docs.snowflake.com/en/user-guide/cost-understanding-

overall, accessed: 04-08-2024
[Sno24b] Snowflake Inc.: Snowflake Website (2024), URL https://

www.snowflake.com, accessed: 03-08-2024
[SQL24] SQLite Consortium: SQLite Website (2024), URL https://

www.sqlite.org, accessed: 24-07-2024
[Sá24] Sá, Daniel; Guimarães, Tiago; Abelha, Antonio and Santos, Manuel Fil-

ipe: Low Code Approach for Business Analytics. Procedia Computer
Science (2024), vol. 231:pp. 421–426

[Tai08] Taivalsaari, Antero; Mikkonen, Tommi; Ingalls, Dan and Palacz,
Krzysztof: Web Browser as an Application Platform, in: 2008 34th
Euromicro Conference Software Engineering and Advanced Applications,
IEEE, pp. 293–302

[The24a] The Apache Software Foundation : Apache Cassandra Website (2024),
URL https://cassandra.apache.org, accessed: 24-07-2024

[The24b] The Apache Software Foundation: Apache APISIX Website (2024),
URL https://apisix.apache.org, accessed: 29-07-2024

[The24c] The Apache Software Foundation: Apache Superset Website (2024),
URL https://superset.apache.org, accessed: 03-08-2024

[The24d] The Apache Software Foundation: CouchDB Website (2024), URL
https://couchdb.apache.org/, accessed: 24-07-2024

[The24e] The GraphQL Foundation: GraphQL Specification (2024), URL https:

//spec.graphql.org/, accessed: 25-04-2024
[The24f] The Guild: GraphQL Mesh Website (2024), URL https://the-

guild.dev/graphql/mesh, accessed: 28-07-2024
[The24g] The PostgreSQL Global Development Group: PostgreSQL Website

(2024), URL https://www.postgresql.org/, accessed: 24-07-2024

82

https://www.sap.com
https://www.sap.com
https://docs.snowflake.com/en/user-guide/cost-understanding-overall
https://docs.snowflake.com/en/user-guide/cost-understanding-overall
https://docs.snowflake.com/en/user-guide/cost-understanding-overall
https://www.snowflake.com
https://www.snowflake.com
https://www.sqlite.org
https://www.sqlite.org
https://cassandra.apache.org
https://apisix.apache.org
https://superset.apache.org
https://couchdb.apache.org/
https://spec.graphql.org/
https://spec.graphql.org/
https://the-guild.dev/graphql/mesh
https://the-guild.dev/graphql/mesh
https://www.postgresql.org/

Bibliography

[Tis19] Tisi, Massimo; Mottu, Jean-Marie; Kolovos, Dimitrios; de Lara, Juan;
Guerra, Esther; Ruscio, Davide Di; Pierantonio, Alfonso and Wim-
mer, Manuel: Lowcomote: Training the Next Generation of Experts in
Scalable Low-Code Engineering Platforms (2019)

[Tyk24] Tyk Technologies: Tyk Website (2024), URL https://tyk.io, accessed:
29-07-2024

[Wan23] Wang, Xinchen; Wang, Peng; Hu, Jian; Wang, Xiang; Zhao, Yuxiao;
Wang, Shaolei; Diao, Liujian and Zhou, Shijie: Design and Implementa-
tion of a Low-Code Platform in the Power Sector, in: Proceedings of the
2023 4th International Conference on Big Data Economy and Information
Management, BDEIM 2023, ACM

[Was19] Waszkowski, Robert: Low-code platform for automating business processes
in manufacturing. IFAC-PapersOnLine (2019), vol. 52(10):pp. 376–381

[Wol18] Wolff, Eberhard: Microservices, dpunkt.verlag, Heidelberg, 2nd edn. (2018)
[Wun24] WunderGraph Inc.: WunderGraph Website (2024), URL https://

wundergraph.com, accessed: 29-07-2024
[Zha18] Zhao, J T; Jing, S Y and Jiang, L Z: Management of API Gateway Based on

Micro-service Architecture. Journal of Physics: Conference Series (2018),
vol. 1087

83

https://tyk.io
https://wundergraph.com
https://wundergraph.com

	Table of contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 Motivation
	1.2 Objectives and Approach
	1.3 Limitation

	2 Fundamentals
	2.1 Analytics Platform
	2.2 Low-Code Platform
	2.3 Modular and Scalable Software
	2.4 Container
	2.5 Application Programming Interface (API)
	2.6 Hypertext Transfer Protocol (HTTP)
	2.7 Representational State Transfer (REST)
	2.8 GraphQL
	2.9 Open Source Software (OSS)
	2.10 C4 Model

	3 Requirements
	3.1 Foundations
	3.2 Functional Requirements
	3.3 Quality Requirements

	4 Related Work
	4.1 Differentiation from Existing Systems
	4.2 Literature

	5 Concept
	5.1 System Architecture
	5.2 System Context
	5.3 System Overview
	5.4 Interface
	5.5 API Security
	5.5.1 Authentication
	5.5.2 Authorization

	5.6 Data Storage
	5.7 Data Access
	5.8 Analyze
	5.8.1 Calculations
	5.8.2 Visualization
	5.8.3 Manual Data input

	5.9 Summary

	6 Implementation
	6.1 Interface
	6.2 API Security
	6.2.1 Authentication
	6.2.2 Authorization

	6.3 Data Storage
	6.4 Analyze
	6.4.1 Calculations
	6.4.2 Visualization

	7 Evaluation
	8 Conclusion
	8.1 Discussion
	8.2 Limitations and Future Research

	Bibliography

