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Space-efficient (Graph) Algorithms

Sorting and Ranking of Self-Delimiting Numbers with Applications to
Tree Isomorphism [8]

Assume that an N -bit sequence S of k self-delimiting numbers is given as input. We
present space-efficient algorithms for sorting, dense ranking and (competitive) ranking
S on the word RAM model with word size Ω(logN) bits. Our algorithms run in
O(k+ N

logN ) time and use O(N) bits. The sorting algorithm returns the given numbers
in sorted order, stored within a bit-vector of N bits, whereas our ranking algorithms
construct data structures that allow us subsequently to return the (dense) rank of each
number x in S in constant time if the position of x in S is given together with x.

As an application of our algorithms above we give an algorithm for tree isomorphism,
which runs in O(n) time and uses O(n) bits on n-node trees. The previous best linear-
time algorithm for tree isomorphism uses Θ(n log n) bits.

Simple 2
f -Color Choice Dictionaries [5]

A c-color choice dictionary of size n ∈ IN is a fundamental data structure in the
development of space-efficient algorithms that stores the colors of n elements and that
supports operations to get and change the color of an element as well as an operation
choice that returns an arbitrary element of that color. For an integer f > 0 and a
constant c = 2f , we present a word-RAM algorithm for a c-color choice dictionary of
size n that supports all operations above in constant time and uses only nf + 1 bits,
which is optimal if all operations have to run in o(n/w) time where w is the word size.

In addition, we extend our choice dictionary by an operation union without using
more space.

Linear-Time In-Place DFS and BFS in the Restore Model [6]

We present an in-place depth first search (DFS) and an in-place breadth first search
(BFS) that runs on a word RAM in linear time such that, if the adjacency arrays of
the input graph are given in a sorted order, the input is restored after running the
algorithm. To obtain our results we use properties of the representation used to store
the given graph and show several linear-time in-place graph transformations from one
representation into another.



Extra Space during Initialization of Succinct Data Structures and Dy-
namical Initializable Arrays [4]

Many succinct data structures on the word RAM require precomputed tables to start
operating. Usually, the tables can be constructed in sublinear time. In this time, most
of a data structure is not initialized, i.e., there is plenty of unused space allocated
for the data structure. We present a general framework to store temporarily extra
buffers between the real data so that the data can be processed immediately, stored
first in the buffers, and then moved into the real data structure after finishing the
tables. As an application, we apply our framework to Dodis, Pǎtraşcu, and Thorup’s
data structure (STOC 2010) that emulates c-ary memory and to Farzan and Munro’s
succinct encoding of arbitrary graphs (TCS 2013). We also use our framework to
present an in-place dynamical initializable array.

Space-efficient FPT Algorithms

FPT-space Graph Kernelizations [7]

Let n be the size of a parametrized problem and k the parameter. We present polynom-
ial-time kernelizations for Cluster Editing/Deletion, Path Contractions and
Feedback Vertex Set that run with O(poly(k) log n) bits and compute a kernel
of size polynomial in k. By first executing the new kernelizations and subsequently
the best known polynomial-time kernelizations for the problem under consideration,
we obtain the best known kernels in polynomial time with O(poly(k) log n) bits.

Our kernelization for Feedback Vertex Set computes in a first step an ap-
proximated solution, which can be used to build a simple algorithm for undirected
s-t-connectivity (USTCON) that runs in polynomial time and with O(poly(k) log n)
bits.

Space-Efficient Vertex Separators for Treewidth [3]

For n-vertex graphs with treewidth k = O(n1/2−ǫ) and an arbitrary ǫ > 0, we present
a word-RAM algorithm to compute vertex separators using only O(n) bits of work-
ing memory. As an application of our algorithm, we give an O(1)-approximation
algorithm for tree decomposition. Our algorithm computes a tree decomposition in
ckn(log log n) log∗ n time using O(n) bits for some constant c > 0.

We finally use the tree decomposition obtained by our algorithm to solve Vertex
Cover, Independent Set, Dominating Set, MaxCut and q-Coloring by using
O(n) bits as long as the treewidth of the graph is smaller than c′ log n for some problem
dependent constant 0 < c′ < 1.

Temporal Graphs

Two Moves per Time Step Make a Difference [1]

A temporal graph is a graph whose edge set can change over time. We only require
that the edge set in each time step forms a connected graph. The temporal exploration



problem asks for a temporal walk that starts at a given vertex, moves over at most one
edge in each time step, visits all vertices, and reaches the last unvisited vertex as early
as possible. We show in this paper that every temporal graph with n vertices can be
explored in O(n1.75+ε) time steps for arbitrary ε > 0 provided that either the degree of
the graph is bounded in each step or the temporal walk is allowed to make two moves
per step. This result is interesting because it breaks the lower bound of Ω(n2) steps
that holds for the worst-case exploration time if only one move per time step is allowed
and the graph in each step can have arbitrary degree. We complement this main result
by a logarithmic inapproximability result and a proof that for sparse temporal graphs
(i.e., temporal graphs with O(n) edges in the underlying graph) making O(1) moves
per time step can improve the worst-case exploration time at most by a constant factor.

Multistage Problems on a Global Budget [2]

Time-evolving or temporal graphs gain more and more popularity when studying the
behavior of complex networks. In this context, the multistage view on computational
problems is among the most natural frameworks. Roughly speaking, herein one studies
the different (time) layers of a temporal graph (effectively meaning that the edge set
may change over time, but the vertex set remains unchanged), and one searches for a
solution of a given graph problem for each layer. The twist in the multistage setting
is that the solutions found must not differ too much between subsequent layers. We
relax on this already established notion by introducing a global instead of the local
budget view studied so far. More specifically, we allow for few disruptive changes
between subsequent layers but request that overall, that is, summing over all layers,
the degree of change is moderate. Studying several classical graph problems (both
NP-hard and polynomial-time solvable ones) from a parameterized complexity angle,
we encounter both fixed-parameter tractability and parameterized hardness results.
Somewhat surprisingly, we find that sometimes the global multistage versions of NP-
hard problems such as Vertex Cover turn out to be computationally more tractable
than the ones of polynomial-time solvable problems such as Matching.
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